Skip to main content

Silicon Carbide-Based Lightweight Mirror Blanks for Space Optics Applications

  • Living reference work entry
  • First Online:
Handbook of Advanced Ceramics and Composites

Abstract

The advantages of the reflective optics over the refractive one for optical imaging in the spaceborne telescopes have been demonstrated over the years. The performance of such optical systems is continually increasing through the use of lightweight and larger mirrors. The use of several materials including ultra-low expansion (ULE) glass, Zerodur glass-ceramics, monolithic aluminum, optical grade beryllium, etc. as the mirrors for space optics is known for decades. Nowadays, silicon carbide (SiC)-based space mirrors have become the most attractive choice because of their excellent mechanical and thermal figure of merits. The superior mechanical and thermal properties of SiC allow in accommodating the complex designs and higher lightweighting over the conventional materials. In addition, a very low surface figure (< λ/20) and surface roughness (~ 0.1 nm) can be achieved in SiC. This chapter discusses the superiority of SiC as mirrors over the existing materials for application in space optics. Subsequently, the detailed processing of SiC-based lightweight mirror blanks involving the production of sintered SiC (S-SiC) substrates followed by cladding with a fully dense SiC coating by chemical vapor deposition (CVD) technique is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Matson LE, Chen MY, deBlonk D, Palusinski IA (2008) Silicon carbide technologies for lightweighted aerospace mirrors. Paper presented at the advanced Maui optical and space surveillance technologies conference, Maui, HI 16–19 September 2008

    Google Scholar 

  2. Chen PC, Saha TT, Smith AM, Romeo R (1998) Progress in very lightweight optics using graphite fiber composite materials. Opt Eng 37:666–676

    Article  CAS  Google Scholar 

  3. Matson LE, Mollenhauer DH (2004) Advanced materials and processes for large, lightweight, space-based mirrors. AMPTIAC Q 8:67–74

    CAS  Google Scholar 

  4. Enya K, Nakagawa T, Kaneda H, Onaka T, Ozaki T, Kume M (2007) Microscopic surface structure of C/SiC composite mirrors for space cryogenic telescopes. Appl Opt 46:2049–2056

    Article  CAS  Google Scholar 

  5. Gou S, Zhang G, Li L, Wang W, Zhao X (2009) Effect of materials and modelling on the design of the space based lightweight mirrors. Mater Des 30:9–14

    Article  Google Scholar 

  6. Paquin RA (1999) Materials for optical systems. In: Ahmad A (ed) Optomechanical engineering handbook. CRC Press LLC, Boca Raton, pp 1–20

    Google Scholar 

  7. Vukobratovich D (1999) Lightweight mirror design. In: Ahmad A (ed) Optomechanical engineering handbook. CRC Press LLC, Boca Raton, pp 1–40

    Google Scholar 

  8. Bely PY (2003) The design and construction of large optical telescopes. Springer, New York

    Book  Google Scholar 

  9. Ealey MA, Wellman JA (1996) Ultralightweight silicon carbide mirror design. In: Advanced materials for optical and precision structures. Denver, 11 November 1996, Proc SPIE vol 2857: 73–77

    Google Scholar 

  10. Rozelot JP, Bingham R, Walker DD (1992) Aluminium mirrors versus glass mirrors. In: Ulrich MH (ed) Progress in telescope and instrumentation technologies, ESO conference and workshop proceedings, Garching, 27–30 April 1992, pp 71–74

    Google Scholar 

  11. Hashiguchi DH, Heberling J, Campbell J, Morales A, Sayer A (2015) New decade of shaped beryllium blanks. In: Material technologies and applications to optics, structures, components, and sub-systems II, San Diego, 2 September 2015, Proc. SPIE vol 9574: 957403-1

    Google Scholar 

  12. Westerhoff T, Werner T (2017) Zerodur expanding capabilities and capacity for future spaceborne and ground-based telescopes. In: Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems, San Diego, 08–11 August, 2017, Proc SPIE 10401: 104010R

    Google Scholar 

  13. Yamada K, Mohri M (1991) Properties and applications of silicon carbide ceramics. In: Somiya S, Inomata Y (eds) Silicon carbide ceramics-1: fundamentals and solid reaction. New York, Elsevier Applied Science, pp 13–44

    Chapter  Google Scholar 

  14. Tanaka H (2011) Silicon carbide powder and sintered materials. J Ceram Soc Jap 119:218–233

    Article  CAS  Google Scholar 

  15. Chen Y, Wang H, Tang J, Liu H, Chen S, Fan Q (2007) Fabrication of lightweight SiC space mirror. Key Eng Mater 336–338:1151–1154

    Article  Google Scholar 

  16. Goela JS, Pickering MA, Taylor RL (1994) Chemical vapour deposited β-SiC for optics applications. In: Chemical vapor deposition of refractory metals and ceramics III, Boston, 28–30 November, 1994, Mat Res Soc Symp Proc 363, pp 71–87

    Google Scholar 

  17. Zang Y, Zhang J, Han J, He X, Yao W (2004) Large-scale fabrication of lightweight Si/SiC composite for optical mirror. Mater Lett 58:1204–1208

    Article  Google Scholar 

  18. Novi A, Basile G, Citterio O, Ghigo M, Caso A, Cattaneo G, Svelto GF (2001) Lightweight SiC foamed mirrors for space applications. In: Optomechanical design and engineering, San Diego, 5 November 2001, Proc SPIE 4444: 59–65

    Google Scholar 

  19. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  20. Utsunomiya S, Kamiya T, Shimizu R (2013) Development of CFRP mirrors for space telescopes. In: Material technologies and applications to optics, structures, components, and sub-systems, San Diego, 30 September 2013, Proc SPIE 8837: 88370P

    Google Scholar 

  21. Wilcox CC, Santiago F, Jungwirth ME, Martinez T, Restaino SR, Bagwell B, Romeo R (2014) First light with a carbon fiber reinforced polymer 0.4-meter telescope. In: MEMS Adaptive Optics VIII, San Francisco, 02 February 2014, Proc SPIE 8978: 897805

    Google Scholar 

  22. Steevesa J, Laslandesa M, Pellegrinoa S, Reddingb D, Bradfordb CS, Wallaceb JK, Barbeec T (2014) Design, fabrication and testing of active carbon shell mirrors for space telescope applications. In: Advances in optical and mechanical technologies for telescopes and instrumentation, Montréal, 28 July 2014, Proc SPIE 9151: 915105

    Google Scholar 

  23. Safa F, Levallois F, Bougoin M, Castel D (1997) Silicon carbide technology for submillimetre space based telescopes. In: 48th international astronautical congress, Turin, 6–10 October 1997, pp 1–10

    Google Scholar 

  24. Lee HB, Suk JY, Bae JI (2015) Trade study of all lightweight primary mirror and metering structure for spaceborne telescopes. In: Krodel M, Robichaud JL, Goodman WA (eds) Material technologies and applications to optics, structures, components, and sub-systems II, San Diego, 10–13 August, 2015, Proc SPIE 9574: 95740D

    Google Scholar 

  25. Guo SW, Zhang GY, Wang WY, Zhao XZ (2006) Design and analysis of lightweight pointing mirror used in space camera. J Phys Conf Ser 48:620–624

    Article  Google Scholar 

  26. Greskovich C, Rosolowski JH (1976) Sintering of covalent solids. J Am Ceram Soc 59:336–343

    Article  CAS  Google Scholar 

  27. Jana DC, Sundararajan G, Chattopadhyay K (2018) Effective activation energy for the solid-state sintering of silicon carbide ceramics. Metal Mater Trans A (Accepted) 49:5599

    Article  CAS  Google Scholar 

  28. Prochazka S (1975) The role of boron and carbon in the sintering of silicon carbide. In: Popper P (ed) Special ceramics, 6th edn. British Ceramic Research Association, Stoke-on Trent, pp 171–182

    Google Scholar 

  29. Gubernat A, Stobierski L (2003) Sintering of silicon carbide I. Effect of carbon. Ceram Int 29:287–292

    Article  Google Scholar 

  30. Malinge A, Coupe A, Petitcorps Y, Pailler R (2012) Pressureless sintering of beta-silicon carbide nanoparticles. J Eur Ceram Soc 32:4393–4400

    Article  CAS  Google Scholar 

  31. Jana DC, Barick P, Saha BP (2018) Effect of sintering temperature on density and mechanical properties of solid-state sintered silicon carbide ceramics and evaluation of failure origin. J Mater Eng Perform 27:2960–2966

    Article  CAS  Google Scholar 

  32. Nesmelov DD, Perevislov SN (2015) Reaction sintered materials based on boron carbide and silicon carbide. Glas Ceram 71:313–319

    Article  CAS  Google Scholar 

  33. Kingery WD, Bowen HK, Uhlmann RD (1976) Introduction to ceramics, 2nd edn. Wiley, New York

    Google Scholar 

  34. Basu B, Tiwari D, Kundu D, Prasad R (2009) Is weibull distribution the most appropriate statistical strength distribution for brittle materials? Ceram Int 35:237–246

    Article  CAS  Google Scholar 

  35. Green D (1998) An introduction to mechanical properties of ceramics, 1st edn. Cambridge University press, New York

    Book  Google Scholar 

  36. Wereszczak AA, Kirkland TP, Strong KT Jr (2010) Size-scaling of tensile failure stress in a hot-pressed silicon carbide. Int J Appl Ceram Technol 7:635–642

    Article  CAS  Google Scholar 

  37. Pickering MA, Taylor RL, Keeley JT, Graves GA (1990) Chemically vapour deposited silicon carbide (SiC) for optical applications. Nucl Instrum Methods Phys Res Sect A 291:95–100

    Article  Google Scholar 

  38. Goela JS, Pickering MA, Taylor RL, Murry BW, Lompado A (1991) Properties of chemical-vapour-deposited silicon carbide for optics applications in severe environments. Appl Opt 30:3166–3175

    Article  CAS  Google Scholar 

  39. Haigis B, Pickering M (1993) CVD scaled up for commercial production of bulk SiC. Am Ceram Soc Bull 72:74–78

    Google Scholar 

  40. Rehn V, Choyke WJ (1980) SiC mirrors for synchrotron radiation. Nucl Inst Methods 177:173–178

    Article  CAS  Google Scholar 

  41. Goela JS, Taylor RL (1991) Fabrication of lightweight ceramic mirrors by means of a chemical vapour deposition process. US patent 5,071596, 10 Dec 1991

    Google Scholar 

  42. Hirai T, Saski M (1991) Silicon carbide prepared by chemical vapour deposition. In: Somiya S, Inomata Y (eds) Silicon carbide ceramics-1: fundamentals and solid reaction. New York, Elsevier Applied Science, pp 77–97

    Chapter  Google Scholar 

  43. Schlichting J (1980) Chemical vapor deposition of silicon carbide. Powder Metall Int 12:141–147

    CAS  Google Scholar 

  44. Wang H, Singh RN, Goela JS (1995) Effects of postdeposition treatments of the mechanical properties of a chemical-vapor-deposited silicon carbide. J Am Ceram Soc 78:2437–2442

    Article  CAS  Google Scholar 

  45. Motojima S, Hasegawa M (1990) Chemical vapor deposition of SiC layers from a gas mixture of CH3SiCI3 + H2 (+ Ar), and effects of the linear velocity and Ar addition. J Vac Sci Technol A 8:3763–3768

    Article  CAS  Google Scholar 

  46. Huo Y, Chen Y (2008) Effect of deposition temperature on the growth characteristics of CVD SiC coatings. Key Eng Mater 368–372:846–848

    Article  Google Scholar 

  47. Lu C, Cheng L, Zhao C, Zhang L, Xu Y (2009) Kinetics of chemical vapor deposition of SiC from methyltrichlorosilane and hydrogen. Appl Surf Sci 255:7495–7499

    Article  CAS  Google Scholar 

  48. Schlichting J (1980) Chemical vapor deposition of silicon carbide. Powder Metall Int 12:196–200

    CAS  Google Scholar 

  49. Chin J, Gantzel K, Hudson G (1977) The structure of chemical vapour deposited silicon carbide. Thin Solid Films 40:57–72

    Article  CAS  Google Scholar 

  50. Pickering MA, Goela JS, Burns LE (1994) Highly polishable highly thermally conductive silicon carbide. US Patent 5,374,412, 20 Dec 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar Prasad Saha .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jana, D.C., Saha, B.P. (2019). Silicon Carbide-Based Lightweight Mirror Blanks for Space Optics Applications. In: Mahajan, Y., Roy, J. (eds) Handbook of Advanced Ceramics and Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-73255-8_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73255-8_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73255-8

  • Online ISBN: 978-3-319-73255-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics