Skip to main content

Processing of Ceramic Foams for Thermal Protection

  • Living reference work entry
  • First Online:
  • 360 Accesses

Abstract

The rapid industrialization and increased space exploration activities necessitate the development of materials of low thermal conductivity capable of withstanding very high temperatures. These materials are called thermal protection materials. They are used either to protect the surrounding personals from the heat flux of high-temperature heat treatments in industries or protect the instruments and astronauts within the crew cabin of a space vehicle from the intense heat flux generated during its reentry into the atmosphere. The high-temperature ceramics such as alumina, silica, zirconia, mullite, SiC, silicon nitride, and silicon oxycarbide are capable of withstanding high temperatures. The materials of choice at extremely high temperatures (above 2000 °C) are either carbon or ultrahigh-temperature ceramics. They include borides and nitrides such as TiB2, ZrB2, HfB2, TiN, ZrN, etc. These materials in their dense state though withstand high temperatures exhibit relatively high thermal conductivity. In addition to the high-temperature capability, the thermal protection materials should be light in weight and have low thermal conductivity. The aspect of low density is utmost important in thermal protection materials used for space applications as an increase in weight increases the amount of fuel required for takeoff and subsequent reentry. The way to achieve lightweight and low thermal conductivity in ceramic materials is by making them porous. The porous ceramics with porosity greater than 70 vol% are called ceramic foams.

This is a preview of subscription content, log in via an institution.

References

  1. Gibson LJ, Ashby MF (1997) Cellular solids. Structure and properties. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139878326

    Book  Google Scholar 

  2. Verma J, Mitra R, Vijayakumar M (2013) Processing of silica foam using steam heating and its characterization. J Eur Ceram Soc 33:943–951. https://doi.org/10.1016/j.jeurceramsoc.2012.11.010

    Article  CAS  Google Scholar 

  3. Orenstein RM, Green DJ (1992) Thermal shock behavior of open-cell ceramic foams. J Am Ceram Soc 75:1899–1905. https://doi.org/10.1111/j.1151-2916.1992.tb07214.x

    Article  CAS  Google Scholar 

  4. Vedula VR, Green DJ, Hellman JR (1999) Thermal shock resistance of ceramic foams. J Am Ceram Soc 82:649–656. https://doi.org/10.1111/j.1151-2916.1999.tb01813.x

    Article  CAS  Google Scholar 

  5. Ohji T, Fukushima M (2012) Macro-porous ceramics: processing and properties. Int Mater Rev 57:115–131. https://doi.org/10.1179/1743280411Y.0000000006

    Article  CAS  Google Scholar 

  6. Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ (2006) Processing routes to macroporous ceramics: a review. J Am Ceram Soc 89:1771–1789. https://doi.org/10.1111/j.1551-2916.2006.01044.x

    Article  CAS  Google Scholar 

  7. Zhang J, Ashby MF (1989) Theoretical studies on isotropic foams. University of Cambridge Department of Engineering, Cambridge

    Google Scholar 

  8. Lewis JA (2004) Colloidal processing of ceramics. J Am Ceram Soc 83:2341–2359. https://doi.org/10.1111/j.1151-2916.2000.tb01560.x

    Article  Google Scholar 

  9. Zhu X, Jiang D, Tan S, Zhang Z (2004) Improvement in the strut thickness of reticulated porous ceramics. J Am Ceram Soc 84:1654–1656. https://doi.org/10.1111/j.1151-2916.2001.tb00895.x

    Article  Google Scholar 

  10. Vogt UF, Gorbar M, Dimopoulos-Eggenschwiler P, Broenstrup A, Wagner G, Colombo P (2010) Improving the properties of ceramic foams by a vacuum infiltration process. J Eur Ceram Soc 30:3005–3011. https://doi.org/10.1016/j.jeurceramsoc.2010.06.003

    Article  CAS  Google Scholar 

  11. Deville S (2008) Freeze-casting of porous ceramics: a review of current achievements and issues. Adv Eng Mater 10:155–169

    Article  CAS  Google Scholar 

  12. Waschkies T, Oberacker R, Hoffmann MJ (2009) Control of lamellae spacing during freeze casting of ceramics using double-side cooling as a novel processing route. J Am Ceram Soc 92:S79–S84. https://doi.org/10.1111/j.1551-2916.2008.02673.x

    Article  CAS  Google Scholar 

  13. Hu L, Wang C-A, Huang Y, Sun C, Lu S, Hu Z (2010) Control of pore channel size during freeze casting of porous YSZ ceramics with unidirectionally aligned channels using different freezing temperatures. J Eur Ceram Soc 30:3389–3396. https://doi.org/10.1016/j.jeurceramsoc.2010.07.032

    Article  CAS  Google Scholar 

  14. Xia Y, Zeng Y-P, Jiang D (2012) Microstructure and mechanical properties of porous Si3N4 ceramics prepared by freeze-casting. Mater Des 33:98–103. https://doi.org/10.1016/J.MATDES.2011.06.023

    Article  CAS  Google Scholar 

  15. Zuo KH, Zeng Y, Jiang D (2010) Effect of cooling rate and polyvinyl alcohol on the morphology of porous hydroxyapatite ceramics. Mater Des 31:3090–3094. https://doi.org/10.1016/J.MATDES.2009.12.044

    Article  CAS  Google Scholar 

  16. Zuo KH, Zeng Y-P, Jiang D (2010) Effect of polyvinyl alcohol additive on the pore structure and morphology of the freeze-cast hydroxyapatite ceramics. Mater Sci Eng C 30:283–287. https://doi.org/10.1016/j.msec.2009.11.003

    Article  CAS  Google Scholar 

  17. Deville S, Saiz E, Tomsia AP (2006) Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 27:5480–5489. https://doi.org/10.1016/j.biomaterials.2006.06.028

    Article  CAS  Google Scholar 

  18. Fu Q, Rahaman MN, Dogan F, Bal BS (2008) Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. J Biomed Mater Res Part B Appl Biomater 86:125–135. https://doi.org/10.1002/jbm.b.30997

    Article  CAS  Google Scholar 

  19. Araki K, Halloran JW (2005) Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique. J Am Ceram Soc 88:1108–1114. https://doi.org/10.1111/j.1551-2916.2005.00176.x

    Article  CAS  Google Scholar 

  20. Araki K, Halloran JW (2004) Room-temperature freeze casting for ceramics with nonaqueous sublimable vehicles in the naphthalene-camphor eutectic system. J Am Ceram Soc 87:2014–2019. https://doi.org/10.1111/j.1151-2916.2004.tb06353.x

    Article  CAS  Google Scholar 

  21. Chen R, Wang C-A, Huang Y, Ma L, Lin W (2007) Ceramics with special porous structures fabricated by freeze-gelcasting: using tert-butyl alcohol as a template. J Am Ceram Soc 90:3478–3484. https://doi.org/10.1111/j.1551-2916.2007.01957.x

    Article  CAS  Google Scholar 

  22. Yang TY, Lee JM, Yoon SY, Park HC (2010) Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. J Mater Sci Mater Med 21:1495–1502. https://doi.org/10.1007/s10856-010-4000-1

    Article  CAS  Google Scholar 

  23. Sofie SW, Dogan F (2004) Freeze casting of aqueous alumina slurries with glycerol. J Am Ceram Soc 84:1459–1464. https://doi.org/10.1111/j.1151-2916.2001.tb00860.x

    Article  Google Scholar 

  24. Zhang Y, Zuo K, Zeng Y-P (2009) Effects of gelatin addition on the microstructure of freeze-cast porous hydroxyapatite ceramics. Ceram Int 35:2151–2154. https://doi.org/10.1016/j.ceramint.2008.11.022

    Article  CAS  Google Scholar 

  25. Imhof A, Pine DJ (1997) Ordered macroporous materials by emulsion templating. Nature 389:948–951. https://doi.org/10.1038/40105

    Article  CAS  Google Scholar 

  26. Ewais EMM, Barg S, Grathwohl G, Garamoon AA, Morgan NN (2011) Processing of open porous zirconia via alkane-phase emulsified suspensions for plasma applications. Int J Appl Ceram Technol 8:85–93. https://doi.org/10.1111/j.1744-7402.2010.02521.x

    Article  CAS  Google Scholar 

  27. Barg S, de Moraes EG, Koch D, Grathwohl G (2009) New cellular ceramics from high alkane phase emulsified suspensions (HAPES). J Eur Ceram Soc 29:2439–2446. https://doi.org/10.1016/j.jeurceramsoc.2009.02.003

    Article  CAS  Google Scholar 

  28. Barg S, Soltmann C, Andrade M, Koch D, Grathwohl G (2008) Cellular ceramics by direct foaming of emulsified ceramic powder suspensions. J Am Ceram Soc 91:2823–2829. https://doi.org/10.1111/j.1551-2916.2008.02553.x

    Article  CAS  Google Scholar 

  29. Vitorino N, Abrantes JCC, Frade JR (2013) Cellular ceramics processed by paraffin emulsified suspensions with collagen consolidation. Mater Lett 98:120–123. https://doi.org/10.1016/J.MATLET.2013.02.020

    Article  CAS  Google Scholar 

  30. Vijayan S, Narasimman R, Prabhakaran K (2014) Freeze gelcasting of hydrogenated vegetable oil-in-aqueous alumina slurry emulsions for the preparation of macroporous ceramics. J Eur Ceram Soc 34:4347–4354. https://doi.org/10.1016/j.jeurceramsoc.2014.07.014

    Article  CAS  Google Scholar 

  31. Vijayan S, Narasimman R, Prabhakaran K (2015) Effect of emulsion composition on gel strength and porosity in the preparation of macroporous alumina ceramics by freeze gelcasting. J Asian Ceram Soc 3:279–286. https://doi.org/10.1016/j.jascer.2015.05.007

    Article  Google Scholar 

  32. Wilson AJ (1989) Foams: physics, chemistry and structure. Springer Science & Business Media, London

    Book  Google Scholar 

  33. Rosen MJ, Kunjappu JT (2012) Surfactants and interfacial phenomena. Wiley, Hoboken

    Book  Google Scholar 

  34. Tadros TF (2006) Applied surfactants: principles and applications. Wiley, Weinheim

    Google Scholar 

  35. Ortega FS, Valenzuela FAO, Scuracchio CH, Pandolfelli VC (2003) Alternative gelling agents for the gelcasting of ceramic foams. J Eur Ceram Soc 23:75–80. https://doi.org/10.1016/S0955-2219(02)00075-4

    Article  CAS  Google Scholar 

  36. Lyckfeldt O, Brandt J, Lesca S (2000) Protein forming – a novel shaping technique for ceramics. J Eur Ceram Soc 20:2551–2559. https://doi.org/10.1016/S0955-2219(00)00136-9

    Article  CAS  Google Scholar 

  37. Dhara S, Bhargava P (2004) Egg white as an environmentally friendly low-cost binder for gelcasting of ceramics. J Am Ceram Soc 84:3048–3050. https://doi.org/10.1111/j.1151-2916.2001.tb01137.x

    Article  Google Scholar 

  38. Potoczek M (2008) Gelcasting of alumina foams using agarose solutions. Ceram Int 34:661–667. https://doi.org/10.1016/j.ceramint.2007.02.001

    Article  CAS  Google Scholar 

  39. Lyckfeldt O, Ferreira JMF (1998) Processing of porous ceramics by ‘starch consolidation’. J Eur Ceram Soc 18:131–140. https://doi.org/10.1016/S0955-2219(97)00101-5

    Article  CAS  Google Scholar 

  40. Zhang F-Z, Kato T, Fuji M, Takahashi M (2006) Gelcasting fabrication of porous ceramics using a continuous process. J Eur Ceram Soc 26:667–671. https://doi.org/10.1016/j.jeurceramsoc.2005.07.021

    Article  CAS  Google Scholar 

  41. Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilised solely by colloidal particles. Adv Colloid Interf Sci 100:503–546. https://doi.org/10.1016/S0001-8686(02)00069-6

    Article  CAS  Google Scholar 

  42. Binks BP (2002) Particles as surfactants – similarities and differences. Curr Opin Colloid Interface Sci 7:21–41. https://doi.org/10.1016/S1359-0294(02)00008-0

    Article  CAS  Google Scholar 

  43. Du Z, Bilbao-Montoya MP, Binks BP, Dickinson E, Ettelaie R, Murray BS (2003) Outstanding stability of particle-stabilized bubbles. Langmuir 19:3106–3108. https://doi.org/10.1021/la034042n

    Article  CAS  Google Scholar 

  44. Gonzenbach UT, Studart AR, Tervoort E, Gauckler LJ (2006) Ultrastable particle-stabilized foams. Angew Chem Int Ed Eng 45:3526–3530. https://doi.org/10.1002/anie.200503676

    Article  CAS  Google Scholar 

  45. Gonzenbach UT, Studart AR, Tervoort E, Gauckler LJ (2007) Macroporous ceramics from particle-stabilized wet foams. J Am Ceram Soc 90:16–22. https://doi.org/10.1111/j.1551-2916.2006.01328.x

    Article  CAS  Google Scholar 

  46. Chuanuwatanakul C, Tallon C, Dunstan DE, Franks GV (2011) Controlling the microstructure of ceramic particle stabilized foams: influence of contact angle and particle aggregation. Soft Matter 7:11464–11474. https://doi.org/10.1039/C1SM06477K

    Article  CAS  Google Scholar 

  47. Liu P, Chen G-F (2014) Porous materials: processing and applications, First edit. Elsevier, Oxford

    Google Scholar 

  48. Hu L, Wang C-A, Huang Y (2011) Porous YSZ ceramics with unidirectionally aligned pore channel structure: lowering thermal conductivity by silica aerogels impregnation. J Eur Ceram Soc 31:2915–2922. https://doi.org/10.1016/J.JEURCERAMSOC.2011.07.014

    Article  CAS  Google Scholar 

  49. Zhang R, Qu Q, Han B, Wang B (2016) A novel silica aerogel/porous Y2SiO5 ceramics with low thermal conductivity and enhanced mechanical properties prepared by freeze casting and impregnation. Mater Lett 175:219–222. https://doi.org/10.1016/J.MATLET.2016.04.051

    Article  CAS  Google Scholar 

  50. Gong L, Wang Y, Cheng X, Zhang R, Zhang H (2014) Porous mullite ceramics with low thermal conductivity prepared by foaming and starch consolidation. J Porous Mater 21:15–21. https://doi.org/10.1007/s10934-013-9741-z

    Article  CAS  Google Scholar 

  51. Shimizu T, Matsuura K, Furue H, Matsuzak K (2013) Thermal conductivity of high porosity alumina refractory bricks made by a slurry gelation and foaming method. J Eur Ceram Soc 33:3429–3435. https://doi.org/10.1016/J.JEURCERAMSOC.2013.07.001

    Article  CAS  Google Scholar 

  52. Han Y, Li C, Bian C, Li S, Wang C-A (2013) Porous anorthite ceramics with ultra-low thermal conductivity. J Eur Ceram Soc 33:2573–2578. https://doi.org/10.1016/J.JEURCERAMSOC.2013.04.006

    Article  CAS  Google Scholar 

  53. Wu Z, Sun L, Pan J, Wang J (2018) Highly porous Y2SiO5 ceramic with extremely low thermal conductivity prepared by foam-gelcasting-freeze drying method. J Am Ceram Soc 101:1042–1047

    Article  CAS  Google Scholar 

  54. Lo YW, Wei WCJ, Hsueh CH (2011) Low thermal conductivity of porous Al2O3 foams for SOFC insulation. Mater Chem Phys 129:326–330. https://doi.org/10.1016/J.MATCHEMPHYS.2011.04.023

    Article  CAS  Google Scholar 

  55. Li Y, Cheng X, Gong L, Feng J, Cao W, Zhang R, Zhang H (2015) Fabrication and characterization of anorthite foam ceramics having low thermal conductivity. J Eur Ceram Soc 35:267–275. https://doi.org/10.1016/J.JEURCERAMSOC.2014.08.045

    Article  CAS  Google Scholar 

  56. Huo W-L, Zhang X-Y, Chen Y-G, Lu Y-J, Liu W-T, Xi X-Q, Wang Y-L, Xu J, Yang J-L (2016) Highly porous zirconia ceramic foams with low thermal conductivity from particle-stabilized foams. J Am Ceram Soc 99:3512–3515. https://doi.org/10.1111/jace.14555

    Article  CAS  Google Scholar 

  57. Zhou W, Yan W, Li N, Li Y, Dai Y, Zhang Z, Ma S (2019) Fabrication of mullite-corundum foamed ceramics for thermal insulation and effect of micro-pore-foaming agent on their properties. J Alloys Compd 785:1030–1037. https://doi.org/10.1016/J.JALLCOM.2019.01.212

    Article  CAS  Google Scholar 

  58. Vijayan S, Wilson P, Sreeja R, Prabhakaran K (2017) Ultralight SiC foams with improved strength from sucrose and silicon powder using magnesium nitrate blowing agent. Mater Lett 194:126–129. https://doi.org/10.1016/J.MATLET.2017.02.032

    Article  CAS  Google Scholar 

  59. Bourret J, Tessier-Doyen N, Naït-Ali B, Pennec F, Alzina A, Peyratout CS, Smith DS (2013) Effect of the pore volume fraction on the thermal conductivity and mechanical properties of kaolin-based foams. J Eur Ceram Soc 33:1487–1495. https://doi.org/10.1016/J.JEURCERAMSOC.2012.10.022

    Article  CAS  Google Scholar 

  60. Yang F, Li C, Lin Y, Wang C-A (2012) Effects of sintering temperature on properties of porous mullite/corundum ceramics. Mater Lett 73:36–39. https://doi.org/10.1016/J.MATLET.2011.12.087

    Article  CAS  Google Scholar 

  61. Zhu M, Ji R, Li Z, Wang H, Liu L, Zhang Z (2016) Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass. Constr Build Mater 112:398–405. https://doi.org/10.1016/J.CONBUILDMAT.2016.02.183

    Article  CAS  Google Scholar 

  62. Han L, Li F, Deng X, Wang J, Zhang H, Zhang S (2017) Foam-gelcasting preparation, microstructure and thermal insulation performance of porous diatomite ceramics with hierarchical pore structures. J Eur Ceram Soc 37:2717–2725. https://doi.org/10.1016/J.JEURCERAMSOC.2017.02.032

    Article  CAS  Google Scholar 

  63. Bourret J, Michot A, Tessier-Doyen N, Naït-Ali B, Pennec F, Alzina A, Vicente J, Peyratout CS, Smith DS (2014) Thermal conductivity of very porous kaolin-based ceramics. J Am Ceram Soc 97:938–944

    Article  CAS  Google Scholar 

  64. Deng X, Wang J, Liu J, Zhang H, Han L, Zhang S (2016) Low cost foam-gelcasting preparation and characterization of porous magnesium aluminate spinel (MgAl2O4) ceramics. Ceram Int 42:18215–18222. https://doi.org/10.1016/J.CERAMINT.2016.08.145

    Article  CAS  Google Scholar 

  65. Wu Z, Sun L, Wan P, Li J, Hu Z, Wang J (2015) In situ foam-gelcasting fabrication and properties of highly porous γ-Y2Si2O7 ceramic with multiple pore structures. Scr Mater 103:6–9. https://doi.org/10.1016/J.SCRIPTAMAT.2015.02.024

    Article  CAS  Google Scholar 

  66. Guo H, Ye F, Li W, Song X, Xie G (2015) Preparation and characterization of foamed microporous mullite ceramics based on kyanite. Ceram Int 41:14645–14651. https://doi.org/10.1016/J.CERAMINT.2015.07.186

    Article  CAS  Google Scholar 

  67. Ge S, Lin L, Zhang H, Bi Y, Zheng Y, Li J, Deng X, Zhang S (2018) Synthesis of hierarchically porous mullite ceramics with improved thermal insulation via foam-gelcasting combined with pore former addition. Adv Appl Ceram 117:493–499. https://doi.org/10.1080/17436753.2018.1502065

    Article  CAS  Google Scholar 

  68. Fukushima M, Yoshizawa Y (2016) Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. J Eur Ceram Soc 36:2947–2953. https://doi.org/10.1016/J.JEURCERAMSOC.2015.09.041

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuttan Prabhakaran .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vijayan, S., Wilson, P., Prabhakaran, K. (2019). Processing of Ceramic Foams for Thermal Protection. In: Mahajan, Y., Roy, J. (eds) Handbook of Advanced Ceramics and Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-73255-8_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73255-8_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73255-8

  • Online ISBN: 978-3-319-73255-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics