Skip to main content

Development of Carbon Nanotube-Reinforced Ceramic Matrix Nanocomposites for Advanced Structural Applications

  • Living reference work entry
  • First Online:
Book cover Handbook of Advanced Ceramics and Composites

Abstract

Ceramic matrix composites containing fiber reinforcements possess superior mechanical and tribological properties, as compared to their monolithic counterparts, that render them better suited for engineering applications demanding high strength, wear resistance, and resistance to thermal shock. Among the wide range of reinforcements used for toughening the otherwise intrinsically brittle bulk ceramic materials, carbon nanotubes (CNTs), owing to their excellent physical, mechanical, and thermal properties, are considered to be one of the most promising reinforcement types. The exceptional mechanical properties of CNTs offer excellent opportunities toward the development of considerably stronger and tougher ceramic nanocomposite systems for potential applications in aircraft and aerospace industries. However, there are many challenges with respect to the processing of CNT-reinforced bulk ceramic materials that limit their commercial applications to considerable extent. Additionally, dispersion of the CNTs, optimization of the CNT volume fractions, development of suitable CNT/matrix interfaces, and distribution within the sintered polycrystalline ceramic microstructures are some of the aspects that need particular attention. Continuing research efforts have been directed toward addressing issues related to such aspects, in a bid to attain best possible combination of mechanical and tribological properties. With regard to microstructure development, achieving uniform distribution of well-dispersed CNTs within the sintered polycrystalline ceramic matrix (i.e., reinforcing the grain interiors and not just the grain boundaries with CNTs) has been found to be particularly difficult, until very recently. In these contexts, after discussing some of the basic aspects of carbon nanotubes and ceramic-CNT composites, the present chapter provides a comprehensive review of the overall status of research and development in CNT-reinforced ceramic matrix composites, with particular emphasis on a variety of processing techniques investigated to date in a bid to optimize the quality of CNT dispersion, character of the CNT-matrix interfaces, eventual densification of the composites, and also cost-effectiveness. The influences of CNT reinforcements on the properties of the some of the important ceramic systems for advanced structural applications are discussed, with an emphasis toward fracture behavior and the possible toughening mechanisms. This review also highlights the more recent research efforts that have been conducted to address the issues concerning inhomogeneous dispersion and distribution of CNTs within the ceramic matrix, thus aiming toward the realization of the full potential of CNTs as reinforcing fibers. Lastly, the various potential applications for ceramic-CNT composites as structural materials have been highlighted, with an outlook toward the scope for future developments and issues that need to be further addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Crivelli-Visconti I, Cooper GA (1969) Mechanical properties of a new carbon fibre material. Nature 221:754–755

    Article  Google Scholar 

  2. Marshall DB, Evans AG (1985) Failure mechanisms in ceramic-fiber/ceramic-matrix composites. J Am Ceram Soc 68:225–231

    Article  CAS  Google Scholar 

  3. Sternitzke M (1997) Structural ceramic nanocomposites. J Eur Ceram Soc 17:1061–1082

    Article  CAS  Google Scholar 

  4. Mukhopadhyay A, Basu B (2007) Consolidation–microstructure–property relationships in bulk nanoceramics and ceramic nanocomposites: a review. Int Mater Rev 52:257–288

    Article  CAS  Google Scholar 

  5. Awaji H, Choi SM, Yagi E (2002) Mechanisms of toughening and strengthening in ceramic-based nanocomposites. Mech Mater 34:411–422

    Article  Google Scholar 

  6. Brennan JJ, Prewo KM (1982) Silicon carbide fibre reinforced glass-ceramic matrix composites exhibiting high strength and toughness. J Mater Sci 17:2371–2383

    Article  CAS  Google Scholar 

  7. Levi CG, Yang JY, Dalgleish BJ, Zok FW, Evans AG (1998) Processing and performance of an all-oxide ceramic composite. J Am Ceram Soc 81:2077–2086

    Article  CAS  Google Scholar 

  8. Dassios KG (2007) A review of the pull-out mechanism in the fracture of brittle-matrix fibre-reinforced composites. Adv Compos Lett 16:17–24

    Article  Google Scholar 

  9. Klug T, Bruckner R (1994) Preparation of C-fibre borosilicate glass composites: influence of the fibre type on mechanical properties. J Mater Sci 29:4013–4021

    Article  CAS  Google Scholar 

  10. Beyerle DS, Spearing SM, Zok FW, Evans AG (1992) Damage and failure in unidirectional ceramic-matrix composites. J Am Ceram Soc 75:2719–2725

    Article  CAS  Google Scholar 

  11. Evans AG, Zok FW (1994) The physics and mechanics of fibre-reinforced brittle matrix composites. J Mater Sci 29:3857–3896

    Article  CAS  Google Scholar 

  12. Davidge RW, Green TJ (1968) The strength of two-phase ceramic/glass materials. J Mater Sci 3:629–634

    Article  CAS  Google Scholar 

  13. Niihara K (1991) New design concept of structural ceramics. J Ceram Soc Jpn 99:974–982

    Article  CAS  Google Scholar 

  14. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  15. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680

    Article  CAS  Google Scholar 

  16. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640

    Article  CAS  Google Scholar 

  17. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  18. Zheng LX, O’Connell MJ, Doorn SK, Liao XZ, Zhao YH, Akhadov EA, Hoffbauer MA, Roop BJ, Jia QX, Dye RC, Peterson DE, Huang SM, Liu J, Zhu YT (2004) Ultralong single-wall carbon nanotubes. Nat Mater 3:673–676

    Article  CAS  Google Scholar 

  19. Cho J, Boccaccini AR, Shaffer MSP (2009) Ceramic matrix composites containing carbon nanotubes. J Mater Sci 44:1934–1951

    Article  CAS  Google Scholar 

  20. Wang X, Padture NP, Tanaka H (2004) Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nat Mater 3:539–544

    Article  CAS  Google Scholar 

  21. Zhan GD, Kuntz JD, Wan J, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2:38–42

    Article  CAS  Google Scholar 

  22. Harris PJF (2004) Carbon nanotube composites. Int Mater Rev 49:31–43

    Article  CAS  Google Scholar 

  23. Lu KL, Lago RM, Chen YK, Green MLH, Harris PJF, Tsang SC (1996) Mechanical damage of carbon nanotubes by ultrasound. Carbon 34:814–816

    Article  CAS  Google Scholar 

  24. Niyogi S, Hamon MA, Perea DE, Kang CB, Zhao B, Pal SK, Wyant AE, Itkis ME, Haddon RC (2003) Ultrasonic dispersions of single-walled carbon nanotubes. J Phys Chem B 107: 8799–8804

    Article  CAS  Google Scholar 

  25. Monthioux M, Smith BW, Burteaux B, Claye A, Fischer JE, Luzzi DE (2001) Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation. Carbon 39:1251–1272

    Article  CAS  Google Scholar 

  26. Galaveen SC, Satam MK, Gurnani L, Venkateswaran T, Mukhopadhyay A (2016) Facile-low temperature route towards development of SiC-based coating on carbon nanotubes for improved oxidation resistance. J Mater Sci 51:8543–8549

    Article  CAS  Google Scholar 

  27. Curtin WA, Sheldon BW (2004) CNT-reinforced ceramics and metals. Mater Today 7:44–49

    Article  CAS  Google Scholar 

  28. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

    Article  CAS  Google Scholar 

  29. Shigeta M, Komatsu M, Nakashima N (2006) Individual solubilization of single-walled carbon nanotubes using totally aromatic polyimide. Chem Phys Lett 418:115–118

    Article  CAS  Google Scholar 

  30. Star A, Stoddart JF (2002) Dispersion and solubilization of single-walled carbon nanotubes with a hyperbranched polymer. Macromolecules 35:7516–7520

    Article  CAS  Google Scholar 

  31. Zhu J, Yudasaka M, Zhang M, Iijima S (2004) Dispersing carbon nanotubes in water: a noncovalent and nonorganic way. J Phys Chem B 108:11317–11320

    Article  CAS  Google Scholar 

  32. Paredes JI, Burghard M (2004) Dispersions of individual single-walled carbon nanotubes of high length. Langmuir 20:5149–5152

    Article  CAS  Google Scholar 

  33. Shaffer MSP, Fan X, Windle AH (1998) Dispersion and packing of carbon nanotubes. Carbon 36:1603–1612

    Article  CAS  Google Scholar 

  34. Perepichka DF, Wudl F, Wilson SR, Schuster DI (2004) The dissolution of carbon nanotubes in aniline, revisited. J Mater Chem 14:2749–2752

    Article  CAS  Google Scholar 

  35. Muller TJJ, Bunz UHF (2007) Functional organic materials: syntheses, strategies and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  36. Mukhopadhyay A (2009) Fabrication and properties of oxide nanocomposites containing uniformly dispersed second phases. PhD thesis, University of Oxford, Oxford, UK

    Google Scholar 

  37. Vasiliev AL, Poyato R, Padture NP (2007) Single-wall carbon nanotubes at ceramic grain boundaries. Scr Mater 56:461–463

    Article  CAS  Google Scholar 

  38. Wei T, Fan Z, Luo G, Wei F (2008) A new structure for multi-walled carbon nanotubes reinforced alumina nanocomposite with high strength and toughness. Mater Lett 62:641–644

    Article  CAS  Google Scholar 

  39. Satam MK, Gurnani L, Vishwanathe S, Mukhopadhyay A (2016) Development of carbon nanotube reinforced bulk polycrystalline ceramics with intragranular carbon nanotube reinforcement. J Am Ceram Soc 99:2905–2908

    Article  CAS  Google Scholar 

  40. Estili M, Kawasaki A (2008) An approach to mass-producing individually alumina-decorated multi-walled carbon nanotubes with optimized and controlled compositions. Scr Mater 58: 906–909

    Article  CAS  Google Scholar 

  41. Estili M, Kawasaki A, Sakamoto H, Mekuchi Y, Kuno M, Tsukada T (2008) The homogeneous dispersion of surfactantless, slightly disordered, crystalline, multiwalled carbon nanotubes in α-alumina ceramics for structural reinforcement. Acta Mater 56:4070–4079

    Article  CAS  Google Scholar 

  42. Chu BTT, Tobias G, Salzmann CG, Ballesteros B, Grobert N, Todd RI, Green ML (2008) Fabrication of carbon-nanotube-reinforced glass–ceramic nanocomposites by ultrasonic in situ sol–gel processing. J Mater Chem 18:5344

    Article  CAS  Google Scholar 

  43. Mukhopadhyay A, Chu BTT, Green MLH, Todd RI (2010) Understanding the mechanical reinforcement of uniformly dispersed multiwalled carbon nanotubes in alumino-borosilicate glass ceramic. Acta Mater 58:2685–2697

    Article  CAS  Google Scholar 

  44. Boccaccini AR, Acevedo DR, Brusatin G, Colombo P (2005) Borosilicate glass matrix composites containing multi-wall carbon nanotubes. J Eur Ceram Soc 25:1515–1523

    Article  CAS  Google Scholar 

  45. Boccaccini AR, Thomas BJC, Brusatin G, Colombo P (2007) Mechanical and electrical properties of hot-pressed borosilicate glass matrix composites containing multi-wall carbon nanotubes. J Mater Sci 42:2030–2036

    Article  CAS  Google Scholar 

  46. Chintapalli RK, Marro FG, Milsom B, Reece M, Anglada M (2012) Processing and characterization of high-density zirconia-carbon nanotube composites. Mater Sci Eng A 549:50–59

    Article  CAS  Google Scholar 

  47. Ning J, Zhang J, Pan Y, Guo J (2003) Fabrication and mechanical properties of SiO2 matrix composites reinforced by carbon nanotube. Mater Sci Eng A 357:392–396

    Article  CAS  Google Scholar 

  48. Peigney A, Laurent C, Dobigeon F, Rousset A (1997) Carbon nanotubes grown in situ by a novel catalytic method. J Mater Res 12:613–615

    Article  CAS  Google Scholar 

  49. Peigney A, Laurent C, Dumortier O, Rousset A (1998) Carbon nanotubes–Fe–alumina nanocomposites. Part I: influence of the Fe content on the synthesis of powders. J Eur Ceram Soc 18:1995–2004

    Article  CAS  Google Scholar 

  50. Laurent C, Peigney A, Dumortier O, Rousset A (1998) Carbon nanotubes-Fe-alumina nanocomposites. Part II: microstructure and mechanical properties of the hot-pressed composites. J Eur Ceram Soc 18:2005–2013

    Article  CAS  Google Scholar 

  51. Flahaut E, Peigney A, Laurent C, Marlière C, Chastel F, Rousset A (2000) Carbon nanotube-metal-oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Mater 48:3803–3812

    Article  CAS  Google Scholar 

  52. Peigney A, Laurent C, Flahaut E, Rousset A (2000) Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram Int 26:677–683

    Article  CAS  Google Scholar 

  53. Peigney A, Flahaut E, Laurent C, Chastel F, Rousset A (2002) Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion. Chem Phys Lett 352:20–25

    Article  CAS  Google Scholar 

  54. Peigney A (2003) Composite materials: tougher ceramics with nanotubes. Nat Mater 2:15–16

    Article  CAS  Google Scholar 

  55. Xia Z, Riester L, Curtin WA, Li H, Sheldon BW, Liang J, Chang B, Xu JM (2004) Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater 52:931–944

    Article  CAS  Google Scholar 

  56. Xia Z, Curtin WA, Sheldon BW (2004) Fracture toughness of highly ordered carbon nanotube/alumina nanocomposites. J Eng Mater Technol 126:238

    Article  CAS  Google Scholar 

  57. Xia ZH, Lou J, Curtin WA (2008) A multiscale experiment on the tribological behavior of aligned carbon nanotube/ceramic composites. Scr Mater 58:223–226

    Article  CAS  Google Scholar 

  58. Kothari AK, Jian K, Rankin J, Sheldon BW (2008) Comparison between carbon nanotube and carbon nanofiber reinforcements in amorphous silicon nitride coatings. J Am Ceram Soc 91:2743–2746

    Article  CAS  Google Scholar 

  59. Kothari AK, Hu S, Xia Z, Konca E, Sheldon BW (2012) Enhanced fracture toughness in carbon-nanotube-reinforced amorphous silicon nitride nanocomposite coatings. Acta Mater 60:3333–3339

    Article  CAS  Google Scholar 

  60. Vasudevan S, Kothari A, Sheldon BW (2016) Direct observation of toughening and R-curve behavior in carbon nanotube reinforced silicon nitride. Scr Mater 124:112–116

    Article  CAS  Google Scholar 

  61. Poyato R, Vasiliev AL, Padture NP, Tanaka H, Nishimura T (2006) Aqueous colloidal processing of single-wall carbon nanotubes and their composites with ceramics. Nanotechnology 17:1770–1777

    Article  CAS  Google Scholar 

  62. Zhang SC, Fahrenholtz WG, Hilmas GE, Yadlowsky EJ (2010) Pressureless sintering of carbon nanotube-Al2O3composites. J Eur Ceram Soc 30:1373–1380

    Article  CAS  Google Scholar 

  63. Fan J, Zhao D, Wu M, Xu Z, Song J (2006) Preparation and microstructure of multi-wall carbon nanotubes-toughened Al2O3 composite. J Am Ceram Soc 89:750–753

    Article  CAS  Google Scholar 

  64. Liu Y, Ramirez C, Zhang L, Wu W, Padture NP (2017) In situ direct observation of toughening in isotropic nanocomposites of alumina ceramic and multiwall carbon nanotubes. Acta Mater 127:203–210

    Article  CAS  Google Scholar 

  65. Sun J, Iwasa M, Gao L, Zhang Q (2004) Single-walled carbon nanotubes coated with titania nanoparticles. Carbon 42:895–899

    Article  CAS  Google Scholar 

  66. Balázsi C, Fényi B, Hegman N, Kövér Z, Wéber F, Vértesy Z, Kónya Z, Kiricsi I, Biró LP, Arató P (2006) Development of CNT/Si3N4 composites with improved mechanical and electrical properties. Compos Part B Eng 37:418–424

    Article  CAS  Google Scholar 

  67. Estili M, Kawasaki A, Sakka Y (2012) Highly concentrated 3D macrostructure of individual carbon nanotubes in a ceramic environment. Adv Mater 24:4322–4326

    Article  CAS  Google Scholar 

  68. Estili M, Sakka Y (2014) Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites. Sci Technol Adv Mater 15:64902

    Article  Google Scholar 

  69. Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A (2012) Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites. J Eur Ceram Soc 32:3001–3020

    Article  CAS  Google Scholar 

  70. Berguiga L, Bellessa J, Vocanson F, Bernstein E, Plenet JC (2006) Carbon nanotube silica glass composites in thin films by the sol-gel technique. Opt Mater 28:167–171

    Article  CAS  Google Scholar 

  71. Zhang Y, Shen Y, Han D, Wang Z, Song J, Niu L (2006) Reinforcement of silica with single-walled carbon nanotubes through covalent functionalization. J Mater Chem 16:4592–4597

    Article  CAS  Google Scholar 

  72. Thomas BJC, Shaffer MSP, Boccaccini AR (2009) Sol-gel route to carbon nanotube borosilicate glass composites. Compos Part A Appl Sci Manuf 40:837–845

    Article  CAS  Google Scholar 

  73. López AJ, Rico A, Rodríguez J, Rams J (2010) Tough ceramic coatings: carbon nanotube reinforced silica sol-gel. Appl Surf Sci 256:6375–6384

    Article  CAS  Google Scholar 

  74. López AJ, Ureña A, Rams J (2011) Wear resistant coatings: silica sol-gel reinforced with carbon nanotubes. Thin Solid Films 519:7904–7910

    Article  CAS  Google Scholar 

  75. Mo CB, Cha SI, Kim KT, Lee KH, Hong SH (2005) Fabrication of carbon nanotube reinforced alumina matrix nanocomposite by sol-gel process. Mater Sci Eng A 395:124–128

    Article  CAS  Google Scholar 

  76. Cha SI, Kim KT, Lee KH, Mo CB, Hong SH (2005) Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process. Scr Mater 53:793–797

    Article  CAS  Google Scholar 

  77. Yamamoto G, Omori M, Hashida T, Kimura H (2008) A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties. Nanotechnology 19:315708

    Article  CAS  Google Scholar 

  78. Echeberria J, Rodríguez N, Vleugels J, Vanmeensel K, Reyes-Rojas A, Garcia-Reyes A, Dominguez-Rios C, Aguilar-Elguezabal A, Bocanegra-Bernal MH (2012) Hard and tough carbon nanotube-reinforced zirconia-toughened alumina composites prepared by spark plasma sintering. Carbon 50:706–717

    Article  CAS  Google Scholar 

  79. Kasperski A, Weibel A, Alkattan D, Estournès C, Turq V, Laurent C, Peigney A (2013) Microhardness and friction coefficient of multi-walled carbon nanotube-yttria-stabilized ZrO2 composites prepared by spark plasma sintering. Scr Mater 69:338–341

    Article  CAS  Google Scholar 

  80. Ma RZ, Wu J, Wei BQ, Liang J, Wu DH (1998) Processing and properties of carbon nanotubes-nano-SiC ceramic. J Mater Sci 33:5243–5246

    Article  CAS  Google Scholar 

  81. Morisada Y, Miyamoto Y, Takaura Y, Hirota K, Tamari N (2007) Mechanical properties of SiC composites incorporating SiC-coated multi-walled carbon nanotubes. Int J Refract Met Hard Mater 25:322–327

    Article  CAS  Google Scholar 

  82. Sarkar K, Sarkar S, Das PK (2016) Spark plasma sintered multiwalled carbon nanotube/silicon carbide composites: densification, microstructure, and tribo-mechanical characterization. J Mater Sci 51:6697–6710

    Article  CAS  Google Scholar 

  83. Gu Z, Yang Y, Li K, Tao X, Eres G, Howe JY, Zhang L, Li X, Pan Z (2011) Aligned carbon nanotube-reinforced silicon carbide composites produced by chemical vapor infiltration. Carbon 49:2475–2482

    Article  CAS  Google Scholar 

  84. Balázsi C, Shen Z, Kónya Z, Kasztovszky Z, Wéber F, Vertesy Z, Biro LP, Kiricsi I, Arato P (2005) Processing of carbon nanotube reinforced silicon nitride composites by spark plasma sintering. Compos Sci Technol 65:727–733

    Article  CAS  Google Scholar 

  85. Corral EL, Cesarano J, Shyam A, Lara-Curzio E, Bell N, Stuecker J, Perry N, Di Prima M, Munir Z, Garay J, Barrera EV (2008) Engineered nanostructures for multifunctional single-walled carbon nanotube reinforced silicon nitride nanocomposites. J Am Ceram Soc 91: 3129–3137

    Article  CAS  Google Scholar 

  86. Li A, Sun K, Dong W, Zhao D (2007) Mechanical properties, microstructure and histocompatibility of MWCNTs/HAp biocomposites. Mater Lett 61:1839–1844

    Article  CAS  Google Scholar 

  87. Meng YH, Tang CY, Tsui CP, Chen DZ (2008) Fabrication and characterization of needle-like nano-HA and HA/MWNT composites. J Mater Sci Mater Med 19:75–81

    Article  CAS  Google Scholar 

  88. Lahiri D, Singh V, Keshri AK, Seal S, Agarwal A (2010) Carbon nanotube toughened hydroxyapatite by spark plasma sintering: microstructural evolution and multiscale tribological properties. Carbon 48:3103–3120

    Article  CAS  Google Scholar 

  89. Lei T, Wang L, Ouyang C, Li NF, Zhou LS (2011) In situ preparation and enhanced mechanical properties of carbon nanotube/hydroxyapatite composites. Int J Appl Ceram Technol 8:532–539

    Article  CAS  Google Scholar 

  90. Guo S, Sivakumar R, Kagawa Y (2007) Multiwall carbon nanotube-SiO2 nanocomposites: sintering, elastic properties, and fracture toughness. Adv Eng Mater 9:84–87

    Article  CAS  Google Scholar 

  91. Sun J, Gao L, Li W (2002) Colloidal processing of carbon nanotube/alumina composites. Chem Mater 14:5169–5172

    Article  CAS  Google Scholar 

  92. Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc 64:533–538

    Article  CAS  Google Scholar 

  93. Quinn GD, Bradt RC (2007) On the vickers indentation fracture toughness test. J Am Ceram Soc 90:673–680

    Article  CAS  Google Scholar 

  94. Jiang D, Thomson K, Kuntz JD, Ager JW, Mukherjee AK (2007) Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina-based nanocomposite. Scr Mater 56:959–962

    Article  CAS  Google Scholar 

  95. Padture NP, Curtin WA (2008) Comment on “Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina-based composite”. Scr Mater 58:989–990

    Article  CAS  Google Scholar 

  96. Jiang D, Mukherjee AK (2008) Response to comment on “Effect of sintering temperature on single-wall carbon nanotube toughened alumina-based nanocomposite”. Scr Mater 58: 991–993

    Article  CAS  Google Scholar 

  97. Bakshi SR, Musaramthota V, Virzi DA, Keshri AK, Lahiri D, Singh V, Seal S, Agarwal A (2011) Spark plasma sintered tantalum carbide-carbon nanotube composite: effect of pressure, carbon nanotube length and dispersion technique on microstructure and mechanical properties. Mater Sci Eng A 528:2538–2547

    Article  CAS  Google Scholar 

  98. Nisar A, Ariharan S, Balani K (2016) Synergistic reinforcement of carbon nanotubes and silicon carbide for toughening tantalum carbide based ultrahigh temperature ceramic. J Mater Res 31:682–692

    Article  CAS  Google Scholar 

  99. Zapata-Solvas E, Poyato R, Gómez-García D, Domínguez-Rodríguez A, Radmilovic V, Padture NP (2008) Creep-resistant composites of alumina and single-wall carbon nanotubes. Appl Phys Lett 92:111912

    Article  CAS  Google Scholar 

  100. Zapata-Solvas E, Gómez-García D, Poyato R, Lee Z, Castillo-Rodríguez M, Domínguez-Rodríguez A, Radmilovic V, Padture NP (2010) Microstructural effects on the creep deformation of alumina/single-wall carbon nanotubes composites. J Am Ceram Soc 93:2042–2047

    CAS  Google Scholar 

  101. Daraktchiev M, Van de Moortèle B, Schaller R, Couteau E, Forró L (2005) Effects of carbon nanotubes on grain boundary sliding in zirconia polycrystals. Adv Mater 17:88–91

    Article  CAS  Google Scholar 

  102. Ionascu C, Schaller R (2006) Influence of carbon nanotubes and silicon carbide whiskers on the mechanical loss due to grain boundary sliding in 3-mol% yttria-stabilized tetragonal zirconia polycrystals. Mater Sci Eng A 442:175–178

    Article  CAS  Google Scholar 

  103. Mazaheri M, Mari D, Hesabi ZR, Schaller R, Fantozzi G (2011) Multi-walled carbon nanotube/nanostructured zirconia composites: outstanding mechanical properties in a wide range of temperature. Compos Sci Technol 71:939–945

    Article  CAS  Google Scholar 

  104. An JW, You DH, Lim DS (2003) Tribological properties of hot-pressed alumina-CNT composites. Wear 255:677–681

    Article  CAS  Google Scholar 

  105. Ahmad I, Kennedy A, Zhu YQ (2010) Wear resistant properties of multi-walled carbon nanotubes reinforced Al2O3 nanocomposites. Wear 269:71–78

    Article  CAS  Google Scholar 

  106. Lim DS, You DH, Choi HJ, Lim SH, Jang H (2005) Effect of CNT distribution on tribological behavior of alumina-CNT composites. Wear 259:539–544

    Article  CAS  Google Scholar 

  107. Zhai W, Srikanth N, Kong LB, Zhou K (2017) Carbon nanomaterials in tribology. Carbon 119:150–171

    Article  CAS  Google Scholar 

  108. Ni B, Sinnott SB (2001) Tribological properties of carbon nanotube bundles predicted from atomistic simulations. Surf Sci 487:87–96

    Article  CAS  Google Scholar 

  109. Balani K, Chen Y, Harimkar SP, Dahotre NB, Agarwal A (2007) Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution. Acta Biomater 3:944–951

    Article  CAS  Google Scholar 

  110. Wells JK, Beaumont PWR (1985) Debonding and pull-out processes in fibrous composites. J Mater Sci 20:1275–1284

    Article  Google Scholar 

  111. Suzuki T, Sato M, Sakai M (2011) Fiber pullout processes and mechanisms of a carbon fiber reinforced silicon nitride ceramic composite. J Mater Res 7:2869–2875

    Article  Google Scholar 

  112. Estili M, Kawasaki A (2010) Engineering strong intergraphene shear resistance in multi-walled carbon nanotubes and dramatic tensile improvements. Adv Mater 22:607–610

    Article  CAS  Google Scholar 

  113. Estili M, Kawasaki A, Pittini-Yamada Y, Utke I, Michler J (2011) In situ characterization of tensile-bending load bearing ability of multi-walled carbon nanotubes in alumina-based nanocomposites. J Mater Chem 21:4272–4278

    Article  CAS  Google Scholar 

  114. Yamamoto G, Shirasu K, Hashida T, Takagi T, Suk JW, An J, Piner RD, Ruoff RS (2011) Nanotube fracture during the failure of carbon nanotube/alumina composites. Carbon 49: 3709–3716

    Article  CAS  Google Scholar 

  115. Padture NP (2009) Multifunctional composites of ceramics and single-walled carbon nanotubes. Adv Mater 21:1767–1770

    Article  CAS  Google Scholar 

  116. Ahmad I, Unwin M, Cao H, Chen H, Zhao H, Kennedy A, Zhu YQ (2010) Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: mechanical properties and interfacial investigations. Compos Sci Technol 70:1199–1206

    Article  CAS  Google Scholar 

  117. Fan JP, Zhuang DM, Zhao DQ, Zhang G, Wu MS, Wei F, Fan ZJ (2006) Toughening and reinforcing alumina matrix composite with single-wall carbon nanotubes. Appl Phys Lett 89:1–4

    Google Scholar 

  118. Li L, Li Y (2017) Development and trend of ceramic cutting tools from the perspective of mechanical processing. IOP Conf Ser Earth Environ Sci 94:012062

    Article  Google Scholar 

  119. Li K, Yang Y, Gu Z, Howe JY, Eres G, Zhang L, Li X, Pan Z (2014) Approaching carbon nanotube reinforcing limit in B4C matrix composites produced by chemical vapor infiltration. Adv Eng Mater 16:161–166

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amartya Mukhopadhyay .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gurnani, L., Mukhopadhyay, A. (2019). Development of Carbon Nanotube-Reinforced Ceramic Matrix Nanocomposites for Advanced Structural Applications. In: Mahajan, Y., Roy, J. (eds) Handbook of Advanced Ceramics and Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-73255-8_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73255-8_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73255-8

  • Online ISBN: 978-3-319-73255-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics