Skip to main content

Advanced SiC-SiC Composites for Nuclear Application

  • Living reference work entry
  • First Online:
Handbook of Advanced Ceramics and Composites
  • 426 Accesses

Abstract

The progress of the development of SiC fiber-reinforced SiC (SiC/SiC) composites focusing on applying the composites to nuclear fusion systems is overviewed. The physical and mechanical properties of SiC/SiC composites prepared with chemical vapor infiltration (CVI), polymer impregnation and pyrolysis (PIP), reaction sintering (RS), and liquid-phase sintering (LPS) are presented. Among various SiC/SiC composites, LPS SiC/SiC composite, so-called nano-powder infiltration and transient eutectoid (NITE) process, with a density close to that of monolithic SiC shows the highest thermal conductivity and mechanical properties. CVI and NITE SiC/SiC composites demonstrate excellent neutron irradiation resistance on thermal conductivity, swelling, flexural strength, and creep properties at temperatures up to 1000 °C. The composites also offer low induced activity, favorable chemical compatibility with liquid candidate coolant of Pb-Li and solid breeder materials, and preferable joining characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

A-SSTR:

Advanced steady-state tokamak reactor

BMAS:

BaO2-MgO-Al2O3-SiO2

BSR:

Bend stress relaxation

CMC:

Ceramic matrix composite

CVI:

Chemical vapor infiltration

D-T:

Deuterium-tritium

FCVI:

Forced-thermal gradient chemical vapor infiltration

HP:

Hot pressing

ITER:

International Thermonuclear Experimental Reactor

LPS:

Liquid phase sintering

NITE:

Nano-powder infiltration and transient eutectoid

PCS:

Polycarbosilane

PIP:

Polymer impregnation and pyrolysis

PMS:

Polymethylsilane

PVS:

Polyvinylsilane

RS:

Reaction sintering

SEMB:

Single-edge notched beam

SiC/SiC:

SiC fiber-reinforced SiC

TBM:

Test blanket modules

References

  1. Ogasawara T (2004) Recent research activities regarding SiC-based ceramic composites for aerospace applications. J Plasma Fusion Res 80:36–41

    Article  Google Scholar 

  2. Mizuta N, Ueta S, Aihara J, Shibata T (2017) Confirmation of feasibility of fabrication technology and characterization of high-packing fraction fuel compact for HTGR, JAEA-Technol. 2017-004

    Google Scholar 

  3. Price RJ (1973) Neutron irradiation-induced voids in β-silicon carbide. J Nucl Mater 48:47–57

    Article  CAS  Google Scholar 

  4. Yajima S, Hayashi J, Omori M, Okamura K (1976) Development of a silicon carbide fibre with high tensile strength. Nature 261:683–685

    Article  CAS  Google Scholar 

  5. Hopkins G, Cheng ET (1983) Low activation fusion rationale. Nucl Technol 4:528–544

    CAS  Google Scholar 

  6. Deck CP, Jacobsen GM, Sheeder J, Gutierrez O, Zhang J, Stone J, Khalifa HE, Back CA (2015) Characterization of SiC-SiC composites for accident tolerant fuel cladding. J Nucl Mater 466:667–681

    Article  CAS  Google Scholar 

  7. Takeda M, Sakamoto J, Imai Y, Ichikawa H (1999) Thermal stability of the low-oxygen-content silicon carbide fiber, Hi-NicalonTM. Compos Sci Technol 59:813–819

    Article  CAS  Google Scholar 

  8. Ichikawa H, Takeda M, Seguchi T, Okamura K (2000) Development of super heat-resistant silicon carbide fiber. Materia Japan 39:190–192

    Article  Google Scholar 

  9. Takeda M, Sakamoto J, Saeki A, Ichikawa H (2008) High performance silicon carbide fiber Hi-Nicalon for ceramic matrix composites. Ceram Eng Sci Proc 16:37–44

    Article  Google Scholar 

  10. Lipowitz J, Rabe JA, Zangvil A, Xu Y (1997) Structure and properties of Sylramic™ silicon carbide fiber – a polycrystalline, stoichiometric β – SiC composition. Ceram Eng Sci Proc 18:147–157

    Article  CAS  Google Scholar 

  11. Morishita K, Ochiai S, Okuda H, Ishikawa T, Sato M, Inoue T (2006) Fracture toughness of a crystalline silicon carbide fiber (Tyranno-SA3®). J Am Ceram Soc 89:2571–2576

    Article  CAS  Google Scholar 

  12. Ishikawa T, Kaji S, Matsunaga K, Hogami T, Kohtoku Y (1995) Structure and properties of Si-Ti-C-O fibre-bonded ceramic material. J Mater Sci 30:6218–6222

    Article  CAS  Google Scholar 

  13. Noda T, Araki H, Suzuki H (1994) Processing of high-purity SiC composites by chemical vapor infiltration (CVI). J Nucl Mater 212-215:823–829

    Article  CAS  Google Scholar 

  14. Naslain R, Langlais F (1986) CVD-processing of ceramic composite materials. In: Tressler RE et al (eds) Tailoring multiphase and composite ceramics, Materials science research, vol 20. Plenum Press, New York, pp 145–164

    Chapter  Google Scholar 

  15. Besmann TM, Sheldon BW, Lowden RA, Stinton DP (1991) Vapor-phase fabrication and properties of continuous-filament ceramic composites. Science 253:1104–1109

    Article  CAS  Google Scholar 

  16. Noda T, Kohyama A, Katoh Y (2001) Recent progress of SiC-fibers and SiC/SiC-composites for fusion applications. Phys Scr T91:124–129

    Article  CAS  Google Scholar 

  17. Yang W, Kohyama A, Katoh Y, Araki H, Yu J, Noda T (2003) Effect of carbon and silicon carbide/carbide interlayers on the mechanical behavior of Tyranno-SA-fiber-reinforced silicon carbide-matrix composites. J Am Ceram Soc 86:851–856

    Article  CAS  Google Scholar 

  18. Yang W, Noda T, Araki H, Yu J, Kohyama A (2003) Mechanical properties of several advanced Tyranno-SA fiber reinforced CVI-SiC matrix composites. Mater Sci Eng A345:28–35

    Article  CAS  Google Scholar 

  19. Yang W, Araki H, Kohyama A, Busabok C, Hu Q, Suzuki H, Noda T (2003) Flexual strength of plain-woven Tyranno-SA fiber-reinforced SiC matrix composite. Mater Trans 44:1797–1801

    Article  CAS  Google Scholar 

  20. Yang W, Araki H, Tang C, Thaveethavorn S, Kohyama A, Suzuki H, Noda T (2005) Single-crystal SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites. Adv Mater 17:1519–1523

    Article  CAS  Google Scholar 

  21. Suyama S, Kameda T, Itoh Y (2001) Evaluation of microstructure, mechanical and thermal properties of SiC/SiC composites. J Ceram Soc Japan 109:619–626

    Article  CAS  Google Scholar 

  22. Kotani M, Kohyama A, Okamura K, Inoue T (1999) Fabrication of high performance SiC/SiC composite by polymer impregnation and pyrolysis method. Ceram Eng Sci Proc 20:309–316

    Article  CAS  Google Scholar 

  23. Dong SM, Katoh Y, Kohyama A, Schwab ST, Snead LL (2002) Microstructural evolution and mechanical performances of SiC/SiC composites by polymer impregnation/microwave pyrolysis (PIMP) process. Ceram Int 28:899–905

    Article  CAS  Google Scholar 

  24. Lee SP, Katoh Y, Hinoki T, Kotani M, Kohyama A, Suyama S, Itoh Y (2000) Microstructure and bending properties of SiC/SiC composites fabricated by reaction sintering process. Ceram Eng Sci Proc 21:339–346

    Article  CAS  Google Scholar 

  25. Kohyama A, Kishimoto H (2013) SiC/SiC composite materials for nuclear applications. Nucl Saf Simul 4:72–79

    Google Scholar 

  26. Dong S, Katoh Y, Kohyama A (2003) Preparation of SiC/SiC composites by hot pressing, using Tyaranno-SA fiber as reinforcement. J Am Ceram Soc 86:26–32

    Article  CAS  Google Scholar 

  27. Shimoda K, Kohyama A, Hinoki T (2009) High mechanical performance SiC/SiC composites by NITE process with tailoring of appropriate fabrication temperature to fiber fraction. Compos Sci Technol 69:1623–1628

    Article  CAS  Google Scholar 

  28. Katoh Y (2004) Status and properties of SiC-based ceramic composites for fusion and advanced fission applications. J Plasma Fusion Res 80:18–23

    Article  CAS  Google Scholar 

  29. Kohyama A (2012) Industrialization of advanced SiC/SiC composites for environment and energy. Materia Japan 51:383–385

    Article  Google Scholar 

  30. Yang W, Araki H, Kohyama A, Yu J, Noda T (2002) New Tyranno-Sa fiber reinforced CVi-SiC/SiC compolsite. J Mater Sci Lett 21:1411–1413

    Article  CAS  Google Scholar 

  31. Yang W, Araki H, Thaveethavorn S, Kohyama A, Yu J, Suzuki H, Noda T (2005) Advanced CVI-SiC/SiC composite with in-situ growth of SiC nanowires in the matrix as additional reinforcement. Mat Sci Forum 175-479:1009–1012

    Article  Google Scholar 

  32. Kotani M, Inoue T, Kohyama A, Katoh Y, Okamura K (2003) Effect of SiC particle dispersion on microstructure and mechanical properties of polymer-derived SiC/SiC composite. Mater Sci Eng A357:376–385

    Article  CAS  Google Scholar 

  33. Kotani M, Ximmer A, Matsuzaki S, Nishiyabu K, Tanaka S (2014) Improvement in matrix microstructure of SiC/SiC composites by incorporation of pore-forming powder. J Ceram Soc Jpn 122:863–869

    Article  CAS  Google Scholar 

  34. Kameda T, Suyama S, Itoh Y, Nishida K (1999) Development of reaction sintered silicon carbide matrix composite and tensile strength properties. J Ceram Soc Jpn 107:622–626

    Article  CAS  Google Scholar 

  35. Graves GA, Iden D (1994) CVD silicon carbide characterization, RL-TR-94-122

    Google Scholar 

  36. Youngblood GE, Jones RH, Kohyama A, Snead LL (1998) Radiation response of SiC-based fibers. J Nucl Mater 258-263:1551–1556

    Article  CAS  Google Scholar 

  37. Snead LL, ZinkIe SJ, Steiner D (1992) Radiation induced microstructure and mechanical property evolution of SiC/C/SiC composite materials. J Nucl Mater 191-194:560–565

    Article  CAS  Google Scholar 

  38. Yano T, Miyazaki H, Akiyoshi M, Iseki T (1998) X-ray diffractometry and high-resolution electron microscopy of neutron-irradiated SiC to a fluence of 1.9×1027 n/m2. J Nucl Mater 253:78–86

    Article  CAS  Google Scholar 

  39. Hollenberg GW, Henager CH Jr, Youngblood GE, Trimble DJ, Simonson SA, Newsome GA, Lewis E (1995) The effect of irradiation on the stability and properties of monolithic silicon carbide and SiCf/SiC composites up to 25 dpa. J Nucl Mater 219:70–86

    Article  CAS  Google Scholar 

  40. Zincle SJ, Snead LL (1998) Thermophysical and mechanical properties of SiC/SiC composites, DOE/ER-0313/24, 93–100

    Google Scholar 

  41. Katoh Y, Snead LL, Henager CH Jr, Hasegawa A, Kohyama A, Riccardi B, Hegeman H (2007) Current status and critical issues for development of SiC composites for fusion applications. J Nucl Mater 367-370:659–671

    Article  CAS  Google Scholar 

  42. Price RJ (1973) Neutron irradiation-induced voids in β-silicon carbide. J Nucl Mater 48:47–57

    Article  CAS  Google Scholar 

  43. Snead LL, Osbone MC, Lowden RA, Strizak J, Shinavski RJ, More KL, Eatherly WS, Bailey J, Williams AM (1998) Low dose irradiation performance of SiC interphase SiC/SiC composites. J Nucl Mater 253:20–30

    Article  CAS  Google Scholar 

  44. Jones RH, Giancarli L, Hasegawa A, Katoh Y, Kohyama A, Riccardi B, Snead LL, Weber WJ (2002) Promise and challenges of SiCf/SiC composites for fusion energy applications. J Nucl Mater 307-311:1057–1072

    Article  CAS  Google Scholar 

  45. Ozawa K, Nozawa T, Katoh Y, Hinoki T, Kohyama A (2007) Mechanical properties of advanced SiC/SiC composites after neutron irradiation. J Nucl Mater 367-370:713–718

    Article  CAS  Google Scholar 

  46. Katoh Y, Snead LL, Nozawa T, Kondo S, Busby J (2010) Thermophysical and mechanical properties of near-stoichiometric fiber CVI SiC/SiC composites after neutron irradiation at elevated temperatures. J Nucl Mater 403:48–61

    Article  CAS  Google Scholar 

  47. Katoh Y, Ozawa K, Shih C, Nozawa T, Shinavski RJ, Hasegawa A, Snead LL (2014) Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: properties and irradiation effects. J Nucl Mater 448:448–476

    Article  CAS  Google Scholar 

  48. Nozawa T, Katoh Y, Snead LL (2009) The effect of neutron irradiation on the fiber/matrix interphase of silicon carbide composites. J Nucl Mater 384:195–211

    Article  CAS  Google Scholar 

  49. Nozawa T, Hinoki T, Katoh Y, Kohyama A (2002) Effects of fibers and fabrication processes on mechanical properties of neutron irradiated SiC/SiC composites. J Nucl Mater 307-311:1173–1177

    Article  CAS  Google Scholar 

  50. Hay JC, Snead LL (1999) Mechanical – and physical property changes of neutron-irradiated chemical-vapor-deposited silicon carbide. J Am Ceram Soc 82:2490–2496

    Article  Google Scholar 

  51. Nogami S, Hasegawa A, Snead LL (2002) Indentation fracture toughness of neutron irradiated silicon carbide. J Nucl Mater 207-211:1163–1167

    Article  Google Scholar 

  52. Hasegawa A (2004) Neutron irradiation effects in SiC and SiC/SiC composites. J Plasma Fusion Res 80:24–30

    Article  CAS  Google Scholar 

  53. Price RJ (1977) Properties of silicon carbide for nuclear fuel particle coatings. Nucl Technol 35:320–336

    Article  CAS  Google Scholar 

  54. Scholz R, Mueller R, Lesueur D (2002) Light ion irradiation creep of Textron SCS-6™ silicon carbide fibers. J Nucl Mater 307-311:1183–1186

    Article  CAS  Google Scholar 

  55. Specialty Materials, INC., SCS silicon carbide fiber, http://www.specmaterials.com/siliconcarbidefiber.htm

  56. Seki Y, Kikuchi M, Ando T, Ohara Y, Nishio S, Seki M, Takizuka T, Tani K, Ozeki T, Koizumi K, Matsuda Y, Azumi M, Oikawa A, Madarame H, Mizoguchi T, Iida F, Ozawa Y, Mori S, Yamazaki S, Kobayashi T, Hirata S, Adachi J, Ikeda B, Suzuki Y, Ueda N, Kageyama T, Yamada M, Asahara M, Konishi K, Yokogawa N, Shinya K, Ozaki A, Takase H, Kobayashi S (1990) The steady state Tokamak reactor. In: Proceedings of 13th international conference on plasma physics and controlled fusion research, vol 3. IAEA, pp 473–485

    Google Scholar 

  57. Giancarli L, Ferrari M, Fuetterer MA, Malang S (2000) Candidate blanket concepts for a European fusion power plant study. Fusion Eng Des 49-50:445–456

    Article  CAS  Google Scholar 

  58. Giancarli L, Golfier H, Nishio S, Raffray R, Wong C, Yamada R (2002) Progress in blanket designs using SiCf/SiC composites. Fusion Eng Des 61-62:307–318

    Article  CAS  Google Scholar 

  59. Abdou A, Bromberg L, Brown T, Chan VC, Chu MC, Dahigren F, El-Guebaly L, Heitzenroeder P, Hendrson D, St. John HE, Kessel CE, Lao LL, Longhurst GR, Malang S, Mau TK, Merrill BJ, Miller RL, Mogahed E, Moore RL, Petrie T, Petti DA, Polizer P, Raffray AR, Steiner D, Sviatoslavsky I, Synder P, Syaebler GM, Turnbull AD, Tillack MS, Wagner LM, Wang X, West P, Wilson P (2006) The ARIES-AT advanced tokamak, advanced technology fusion power plant. Fusion Eng Des 80:3–23

    Article  CAS  Google Scholar 

  60. Nishio S, Tobita K, Ushigusa K, Konishi S, Reactor Design Team (2002) Conceptual design of Tokamak high power reactor (A-SSTR2). J Plasma Fusion Res 78:1218–1230

    Article  CAS  Google Scholar 

  61. Raffray AR, Akiba M, Chuyanov V, Giancarli L, Malang S (2002) Breeding blanket concepts for fusion and materials requirements. J Nucl Mater 307-311:21–30

    Article  CAS  Google Scholar 

  62. ITER – the way to new energy https://www.iter.org/

  63. Konishi T, Enoeda M (2014) The current status of the world ITER test blanket module program. J Plasma Res 90:332–337

    CAS  Google Scholar 

  64. Conn RW, Holdren JP, Sharafat S, Steiner D, Ehst DA, Hogan WJ, Krakowski RA, Miller RL, Najmabadi F, Schultz KR (1990) Economic, safety and environmental prospects of fusion reactors. Nucl Fusion 30:1919–1934

    Article  CAS  Google Scholar 

  65. Seki Y, Tabara T, Aoki I, Ueda S, Nishio S, Kurihara R (1998) Impact of low activation materials on fusion reactor design. J Nucl Mater 258-263:1791–1797

    Article  CAS  Google Scholar 

  66. Noda T, Fujita M (1996) Effect of neutron spectra on the transmutation of first wall materials. J Nucl Mater 233-237:1491–1495

    Article  CAS  Google Scholar 

  67. Snead LL, Scholz R, Hasegawa A, Frias Rebelo A (2002) Experimental simulation of the effect of transmuted helium on the mechanical properties of silicon carbide. J Nucl Mater 307-311:1141–1145

    Article  CAS  Google Scholar 

  68. Kishimoto H, Katoh Y, Kohyama A (2002) Microstructural stability of SiC and SiC/SiC composites under high temperature irradiation environment. J Nucl Mater 307-311:1130–1134

    Article  CAS  Google Scholar 

  69. Causey RA, Wampier WR, Retelle JR, Kaae JL (1993) Tritium migration in vapor-deposited β-silicon carbide. J Nucl Mater 203:196–205

    Article  CAS  Google Scholar 

  70. Fenichi P, Scholz HW (1994) Advanced low-activation materials. Fibre-reinforced ceramic composites. J Nucl Mater 212-215:60–68

    Article  Google Scholar 

  71. Yoneoka T, Tanaka S, Terai T (2001) Compatibility of SiC/SiC composite materials with molten lithium metal and Li16-Pb84 eutectic alloy. Mater Trans, JIM 42:1019–1023

    Article  CAS  Google Scholar 

  72. Hubberstey P, Sample T (1997) Thermodynamics of the interactions between liquid breeders and ceramic coating materials. J Nucl Mater 248:140–146

    Article  CAS  Google Scholar 

  73. Sample T, Fenici P, Kolbe H, Orecchia L (1994) The compatibility of SiC/SiC composites with ceramic breeder materials. J Nucl Mater 212-215:1529–1533

    Article  CAS  Google Scholar 

  74. Hinoki T, Katoh Y, Snead LL, Jung HC, Ozawa K, Katsui H, Zhong ZH, Kondo S, Park YH, Shih C, Parish CM, Meiner RA, Hasegawa A (2013) Silicon carbide and silicon carbide composites for fusion reactor application. Mater Trans 54:472–476

    Article  CAS  Google Scholar 

  75. Naslain R (2004) Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos Sci Technol 64:155–170

    Article  CAS  Google Scholar 

  76. Katoh Y, Snead LL, Henager CH Jr, Nozawa T, Hinoki T, Ivekovic A, Novak S, Gonzalez de Vicente SM (2014) Current status and recent research achievements in SiC/SiC composites. J Nucl Mater 455:387–397

    Article  CAS  Google Scholar 

  77. Park JS, Kohyama A, Hinoki T, Shimoda K, Park YH (2007) Efforts on large scale production of NITE-SiC/SiC composites. J Nucl Mater 367-370:719–724

    Article  CAS  Google Scholar 

  78. Henager CH Jr, Kurtz RJ (2011) Low-activation joining of SiC/SiC composites for fusion applications. J Nucl Mater 417:375–378

    Article  CAS  Google Scholar 

  79. Riccardi B, Giancarli L, Hasegawa A, Katoh Y, Kohyama A, Jones RH, Snead LL (2004) Issues and advances in SiC/SiC composites development for fusion reactors. J Nucl Mater 329-333:56–65

    Article  CAS  Google Scholar 

  80. Lewinsohn CA, Singh M, Shibayama T, Hinoki T, Ando M, Katoh Y, Kohyama A (2000) Joining of silicon carbide composites for fusion energy applications. J Nucl Mater 283-287:1258–1261

    Article  CAS  Google Scholar 

  81. Hinoki T, Eiza N, Son SJ, Shimoda K, Lee JK, Kohyama A (2005) Development of joining and coating technique for SiC and SiC/SiC composites utilizing NITE processing. Mechanical properties and performance of engineering ceramics and composites. Ceram Eng Sci Proc 26:399–405

    Article  CAS  Google Scholar 

  82. Ferraris M, Salvo M, Casalegno V, Han S, Katoh Y, Jung HC, Hinoki T, Kohyama A (2011) Joining of SiC-based materials for nuclear energy applications. J Nucl Mater 417:379–382

    Article  CAS  Google Scholar 

  83. Katoh Y, Snead LL, Cheng T, Shih C, Lewis WD, Koyanagi T, Hinoki T, Henager CH Jr, Ferraris M (2014) Radiation-tolerant joining technologies for silicon carbide ceramics and composites. J Nucl Mater 448:497–511

    Article  CAS  Google Scholar 

  84. Hino T, Hayashita E, Kohyama A, Yamauchi Y, Hirohata Y (2007) Helium gas permeability of SiC/SiC composite after heat cycles. J Nucl Mater 367-370:736–741

    Article  CAS  Google Scholar 

  85. Bolt H, Barabash V, Federici G, Linke J, Loarte A, Roth J, Sato K (2002) Plasma facing and high heat flux materials – needs for ITER and beyond. J Nucl Mater 307-311:43–52

    Article  CAS  Google Scholar 

  86. Hasegawa A, Fukuda M, Tanno T, Nogami S (2013) Neutron irradiation behavior of tungsten. Mater Trans 54:466–471

    Article  CAS  Google Scholar 

  87. Kishimoto H, Shibayama T, Shimoda K, Kobayashi T, Kohyama A (2011) Microstructural and mechanical characterization of W/SiC bonding for structural material in fusion. J Nucl Mater 417:387–390

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuji Noda .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Noda, T. (2019). Advanced SiC-SiC Composites for Nuclear Application. In: Mahajan, Y., Roy, J. (eds) Handbook of Advanced Ceramics and Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-73255-8_20-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73255-8_20-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73255-8

  • Online ISBN: 978-3-319-73255-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics