Skip to main content

Transparent Ceramics for Ballistic Armor Applications

  • Living reference work entry
  • First Online:
Handbook of Advanced Ceramics and Composites

Abstract

Ceramic materials that are transparent to visible light with excellent mechanical properties are emerging as suitable candidate materials for ballistic armor applications. Various advanced materials such as single crystal sapphire, spinel, and aluminum oxynitride have been developed to withstand the penetration of the projectile during impact. The armors produced from these materials exhibit outstanding ballistic performance compared to the conventional soda-lime glass and glass-ceramics due to their remarkable hardness in combination with other superior mechanical properties. This chapter presents an overview of various transparent ceramic materials that have been explored hitherto for the armor applications along with various processing fundamentals required to produce these materials. This chapter also reviews the fabrication and comparative evaluation of conventional and advanced transparent armor materials for ballistic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Harris DC (2009) Materials for infrared windows and domes: properties and performance, SPIE, Press monograph, PM70. SPIE-The International Society for Optical Engineering, Bellingham

    Google Scholar 

  2. Patel PJ (2000) Transparent ceramics for armor and EM window applications. In: Proceedings of SPIE, inorganic optical materials II, vol. 4102, p 1, International Symposium on Optical Science and Technology, San Diego, CA, United States

    Google Scholar 

  3. Stefanik T (2007) Nanocomposite optical ceramics for infrared widows and domes. Proc SPIE 6545

    Google Scholar 

  4. Klementa R (2008) Transparent armor materials. J Eur Ceram Soc 28:1091

    Article  CAS  Google Scholar 

  5. Lundin L (2005) Air force testing new transparent armor, air force research laboratory public affairs, https://www.af.mil/News/Article-Display/Article/133073/air-force-testing-new-transparent-armor/

  6. Kasim HA, Susumu N, Sadao A (1994) Optical constants of sapphire (alpha-Al2O3) single crystals. J Appl Phys 76:8032–8036

    Article  Google Scholar 

  7. Na-Phattalunga S, Limpijumnong S, T-Thienpraserte J, Yu J (2018) Magnetic states and intervalence charge transfer of Ti and Fe defectsina-Al2O3: the origin of the blue in sapphire. Acta Mater 143:248–256

    Article  CAS  Google Scholar 

  8. Grobosch M, Schmidt C, Naber WJM, van der Wiel WG, Knupfer M (2010) A photoemission study of interfaces between organic semiconductors and Co as well as Al2O3/Co contacts. Synth Met 160:238–243

    Article  CAS  Google Scholar 

  9. Dobrovinskaya ER, Litvinov LA, Pischik V (2009) Sapphire: material, manufacturing, applications. Springer, Berlin

    Google Scholar 

  10. Khattak CP, Shetty R, Schwerdtfeger CR, Ullal S (2016) World’s largest sapphire for many applications. J Cryst Growth 452:44–48

    Article  CAS  Google Scholar 

  11. Harris DC (2004) A century of sapphire crystal growth. In: Proceedings of 10th DoD electromagnetic windows symposium, Norfolk, pp 1–17

    Google Scholar 

  12. Binar T, Svarc J, Vyroubal P, Kazda T, Rolc S, Dvorak A (2018) The comparison of numerical simulation of projectile interaction with transparent armor glass for buildings and vehicles. Eng Fail Anal 92:121–139

    Article  Google Scholar 

  13. Straßburger E (2009) Ballistic testing of transparent armor ceramics. J Eur Ceram Soc 29:267–273

    Article  CAS  Google Scholar 

  14. Johnson R, Biswas P, Ramavath P, Kumar RS, Padmanabham G (2012) Transparent polycrystalline ceramics: an overview. Trans Indian Ceram Soc 71:73–85

    Article  CAS  Google Scholar 

  15. Krell A, Hutzler T, Klimke J (2009) Transmission physics and consequences for materials selection, manufacturing, and applications. J Eur Ceram Soc 29:207–221

    Article  CAS  Google Scholar 

  16. Apetz R, Van Bruggen MPB (2003) Transparent alumina: a light scattering model. J Am Ceram Soc 86:480–486

    Article  CAS  Google Scholar 

  17. Yamamoto H, Mitsuoko T, Iio S Translucent polycrystalline ceramic and method for making same. Europe Patent application EP 1 053 983 A2, IPK7 C04B35/115, 22 Nov 2000

    Google Scholar 

  18. Fakolujo O, Merati A, Bielawski M, Bolduc M, Nganbe M (2016) Role of microstructural features in toughness improvement of zirconia toughened alumina. J Miner Mater Charact Eng 4:87–102

    CAS  Google Scholar 

  19. Kaufmann C, Cronin D, Worswick M, Pageau G, Beth A (2003) Influence of material properties on the ballistic performance of ceramics for personal body armor. Shock Vib 10:51–58

    Article  Google Scholar 

  20. Franco A, Roberts SG, Warren PD (1997) fracture toughness, surface flaw sizes and flaw densities in Al2O3. Acta Mater 45:1009–1015

    Article  CAS  Google Scholar 

  21. Benitez T, Gomez SY, Novaes de Oliveira AP, Travitzky N, Hotza D (2017) Transparent ceramic and glass-ceramic materials for armor applications. Ceram Int 43:13031–13046

    Article  CAS  Google Scholar 

  22. Krell A, Strassburger E (2014) Order of influences on the ballistic resistance of armor ceramics and single crystals. Mater Sci Eng A 597:422–430

    Article  CAS  Google Scholar 

  23. Krell A, Strassburger E, Hutzler T, Klimke J (2013) Single and polycrystalline transparent ceramic armor with different crystal structure. J Am Ceram Soc 96:2718–2721

    Article  CAS  Google Scholar 

  24. Krell A, Strassburger E (2012) Discrimination of basic influences on the ballistic strength of opaque and transparent ceramics. Ceram Eng Sci Proc 33:161–176

    Article  Google Scholar 

  25. Grujicic M, Bell WC, Pandurangan B (2012) Design and material selection guidelines and strategies for transparent armor systems. Mater Des 34:808–819

    Article  CAS  Google Scholar 

  26. Talladay TG, Templeton DW (2014) Glass armor-an overview. Int J Appl Glas Sci 5:331–333

    Article  Google Scholar 

  27. Barnak R, Franks LP, Holm D (2008) Transparent armor cost benefit study. In: Proceedings of the structures and materials intelligence seminar. McLean. pp 1–2

    Google Scholar 

  28. Grujicic M, Pandurangan B, Coutris N, Cheeseman BA, Fountzoulas C, Patel P, Strassburger E (2008) A ballistic material model for starphire®, a soda-lime transparent-armor glass. Mater Sci Eng A 491:397–411

    Article  CAS  Google Scholar 

  29. Swab JJ, Lasalvia JC, Gilde GA, Patel PJ, Motyka MJ (1999) Transparent armor ceramics: AlON and spinel. In: 23rd annual conference on composites, advanced ceramics, materials and structures: b: ceramic engineering science proceedings, vol. 20. pp 79–84, Cocoa Beach, Florida

    Google Scholar 

  30. Sheikh MZ, Wang Z, Suo T, Lia Y, Ahmeda S, Dar UA (2018) Effect of polymeric interlayer on wave propagation in transparent soda-lime glass. Proc Struct Integr 13:2120–2125

    Article  Google Scholar 

  31. Walley SM (2010) Historical review of high strain rate and shock properties of ceramics relevant to their application in amour. Adv Appl Ceram 109:446–466. 2010

    Article  CAS  Google Scholar 

  32. Grujicic M, Pandurangan B, Bell WC, Coutris N, Cheeseman BA, Fountzoulas C, Patel P, Templeton DW, Bishnoi KD (2009) An improved mechanical material model for ballistic soda-lime glass. J Mater Eng Perform 18:1012–1028

    Article  CAS  Google Scholar 

  33. Salem JA (2013) Transparent armor ceramics as spacecraft windows. J Am Ceram Soc 96:281–289

    Article  CAS  Google Scholar 

  34. Krell A, Hutzler T, Klimke J (2005) Physics and technology of transparent ceramic armor: sintered Al2O3 vs cubic materials. In: Nanomaterials technology for military vehicle structural applications, RTO-MP-AVT-122. pp 14-1–14-10, Paper 14. Neuilly-sur-Seine, France: RTO, http://www.rto.nato.int/abstracts.asp.

  35. Ramisetty M, Sastri S, Kashalikar U, Goldman LM, Nag N (2013) Transparent polycrystalline cubic spinels protect and defend. Am Ceram Soc Bull 92:20–25

    CAS  Google Scholar 

  36. Goldman LM, Twedt R, Balasubramanian S (2011) ALON optical ceramic transparencies for window, dome, and transparent armor applications. Proc SPIE 8016:77

    Google Scholar 

  37. Horsfall I (2001) Glass ceramic armor system for light armor applications. In: Proceedings of 19th international symposium on ballistics, Interlaken, Switzerland

    Google Scholar 

  38. Haney EJ, Subhash G (2013) Damage mechanisms perspective on superior ballistic performance of Spinel over Sapphire. Exp Mech 53(1):31–46

    Article  Google Scholar 

  39. Shockey DA, Simons JW, Curran DR (2010) The damage mechanism route to better armor materials. Int J Appl Ceram Technol 7(5):566–573

    Article  CAS  Google Scholar 

  40. Krell A, Strabburger E (2014) Order of influences on the ballistic resistance of armor ceramics and single crystals. Mater Sci Eng A 597:422–430

    Article  CAS  Google Scholar 

  41. Wahl JM, Hartnett TM, Goldman LM, Twedt R, Warner C (2005) Recent advances in AlON optical ceramic, Window and Dome Technologies and Materials IX. Proc SPIE 5786:71–82

    Article  CAS  Google Scholar 

  42. Goldman LM, Twedt R, Balasubramanian S, Sastri S (2011) ALON optical ceramic transparencies for window, dome, and transparent armor applications, Window and Dome Technologies and Materials XII. Proc SPIE 8016:1–14

    Google Scholar 

  43. http://www.surmet.com/technology/alon-optical-ceramics/. Reference dated 31 Dec 2018

  44. Xie X, Wang Y, Qi J, Wang S, Feng Z, Hou G, Liu W, Zhang W, Xu Q, Lu T (2016) Ethanol-water-derived sucrose-coated-Al2O3 for sub-micrometer AlON powder synthesis. J Am Ceram Soc 99(8):2601–2606

    Article  CAS  Google Scholar 

  45. Corbin ND (1989) Aluminum oxynitride spinel: a review. J Eur Ceram Soc 5:143–154

    Article  CAS  Google Scholar 

  46. Senthil Kumar R, Rajeswari K, Praveen B, Hareesh US, Johnson R (2010) Processing of aluminum oxynitride through aqueous colloidal forming techniques. J Am Ceram Soc 93(2):429–435

    Article  CAS  Google Scholar 

  47. Peelen JGJ, Metselaar R (1974) Light scattering by pores in polycrystalline materials: transmission properties of alumina. J Appl Phys 45:216–220

    Article  CAS  Google Scholar 

  48. Krell A, Hutzler T, Klimke J (2006) NATO-OTAN – nano materials technology for military vehicle applications. 14-1–14-10. http://www.dtic.mil/get-tr-doc/pdf?AD=ADA469603

  49. Miller L, Kalpan WD (2008) Water-based method for processing of aluminium oxynitride (AlON). Int J Appl Ceram Technol 5([6]):641–648

    Article  CAS  Google Scholar 

  50. Senthil Kumar R, Johnson R (2016) Aqueous slip casting of transparent aluminium oxynitride. J Am Ceram Soc 99(10):3220–3225

    Article  CAS  Google Scholar 

  51. Wang J, Zhang F, Chen F, Zhang H, Tian R, Dong M, Liu J, Zhang Z, Zhang J, Wang S (2014) Fabrication of aluminum oxynitride (c-AlON) transparent ceramics with modified gel casting. J Am Ceram Soc 97(5):1353–1355

    Article  CAS  Google Scholar 

  52. Parker A (2011) Aluminum oxynitride armor production and modeling of next generation transparent armor for the global war on terror, thesis report, Brigham Young University, Physics and Astronomy

    Google Scholar 

  53. Ganesh I (2013) A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications. Int Mater Rev 58:63–112

    Article  CAS  Google Scholar 

  54. Muan A, Osborn EF (1965) Phase equilibria among oxides in steel making. Addison-Wesley, Reading

    Google Scholar 

  55. Meir S, Kalabukhov S, Froumin N, Dariel MP, Frage N (2009) Synthesis and densification of transparent magnesium aluminate spinel by SPS processing. J Am Ceram Soc 92:358–364

    Article  CAS  Google Scholar 

  56. Ganesh I, Sundararajan G, Ferreira JMF (2011) Aqueous slip casting and hydrolysis assisted solidification of MgAl2O4 spinel. Adv Appl Ceram 110:63–69

    Article  CAS  Google Scholar 

  57. Shafeiey A, Enayati MH, Al-Haji A (2017) The effect of slip casting parameters on the green density of MgAl2O4 spinel. Ceram Int 43:6069–6074

    Article  CAS  Google Scholar 

  58. Krell A, Klimke J, Hutzler T (2009) Advanced spinel and sub-μm Al2O3 for transparent armor applications. J Eur Ceram Soc 29:275–281

    Article  CAS  Google Scholar 

  59. Zhang P, Liu P, Sun Y, Wang J, Wang Z, Wang S, Zhang J (2015) Aqueous gelcasting of the transparent MgAl2O4 spinel ceramics. J Alloys Compd 646:833–836

    Article  CAS  Google Scholar 

  60. Krell A, Hutzler T, Klimke J, Potthoff A (2010) Fine-grained transparent spinel windows by the processing of different nanopowders. J Am Ceram Soc 93:2656–2666

    Article  CAS  Google Scholar 

  61. Gajdowski A, Böhmler J, Lorgouilloux Y, Lemonnier S, d’Astorg S, Barraud E, Leriche A (2017) Influence of post-HIP temperature on microstructural and optical properties of pure MgAl2O4 spinel: from opaque to transparent ceramics. J Eur Ceram Soc 37:5347–5351

    Article  CAS  Google Scholar 

  62. Shimada M, Endo T, Saito T, Sato T (1996) Fabrication of transparent spine1 polycrystalline materials. Mater Lett 28:413–415

    Article  CAS  Google Scholar 

  63. Krell A, Hutzler T, Klimke J (2014) Defect strategies for an improved optical quality of transparent ceramics. Opt Mater 38:61–74

    Article  CAS  Google Scholar 

  64. Biswas P, Rajeswari K, Ramavath P, Johnson R, Maiti HS (2013) Fabrication of transparent spinel honeycomb structures by methyl cellulose based thermal gelation processing. J Am Ceram Soc 96:3042–3045

    CAS  Google Scholar 

  65. Biswas P, Ramavath P, Kumbhar CS, Patil DS, Chongdar TK, Gokhale NM, Johnson R, Mohan MK (2017) Effect of room and high temperature compaction on optical and mechanical properties of HIPed transparent spinel ceramics. Adv Eng Mater 19:1700111-1–1700111-7

    Article  CAS  Google Scholar 

  66. Ramavath P, Biswas P, Rajeswari K, Suresh MB, Johnson R, Padmanabham G, Kumbhar CS, Chongdar TK, Gokhale NM (2014) Optical and mechanical properties of compaction and slip cast processed transparent polycrystalline spinel ceramics. Ceram Int 40:5575–5581

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashwant Ramachandra Mahajan .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rajendran, S., Biswas, P., Johnson, R., Mahajan, Y.R. (2020). Transparent Ceramics for Ballistic Armor Applications. In: Mahajan, Y., Roy, J. (eds) Handbook of Advanced Ceramics and Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-73255-8_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73255-8_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73255-8

  • Online ISBN: 978-3-319-73255-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics