Skip to main content

Poly-Beta-Hydroxybutyrate (PHB) and Infection Reduction in Farmed Aquatic Animals

  • Living reference work entry
  • First Online:

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

There is a continuous effort in finding effective and sustainable strategies to control diseases in farmed animals, and in recent years, the application of the bacterial storage compound poly-β-hydroxybutyrate (PHB) was identified as a new disease control agent for aquaculture. The idea of using PHB as a biocontrol agent was conceived based on the knowledge that this biopolymer can be degraded into short-chain fatty acids (SCFAs), and SCFAs are known compounds with antimicrobial properties. At the beginning of this chapter, an overview about the PHB granule, its detection, quantification, production, and recovery in microorganisms is presented. The main topic focuses on the application and beneficial effects of PHB in farmed aquatic animals. The mechanisms by which PHB provides beneficial effects to the host are discussed.

This is a preview of subscription content, log in via an institution.

References

  • Alva-Murillo N, Ochoa-Zarzosa A, López-Meza JE (2012) Short chain fatty acids (propionic and hexanoic) decrease Staphylococcus aureus internalization into bovine mammary epithelial cells and modulate antimicrobial peptide expression. Vet Microbiol 155:324–331

    Article  CAS  PubMed  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aslım B, Çalışkan F, Beyatlı Y, Gündüz U (1998) Poly-β-hydroxybutyrate production by lactic acid bacteria. FEMS Microbiol Lett 159:293–297

    Article  PubMed  Google Scholar 

  • Azain M (2004) Role of fatty acids in adipocyte growth and development. J Anim Sci 82:916–924

    Article  CAS  PubMed  Google Scholar 

  • Baruah K, Huy TT, Norouzitallab P, Niu Y, Gupta SK, De Schryver P, Bossier P (2015) Probing the protective mechanism of poly-ß-hydroxybutyrate against vibriosis by using gnotobiotic Artemia franciscana and Vibrio campbellii as host-pathogen model. Sci Rep 5:9427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger E, Ramsay B, Ramsay J, Chavarie C, Braunegg G (1989) PHB recovery by hypochlorite digestion of non-PHB biomass. Biotechnol Tech 3:227–232

    Article  CAS  Google Scholar 

  • Brandl H, Gross RA, Lenz RW, Fuller RC (1990) Plastics from bacteria and for bacteria: poly (β-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. In: Microbial bioproducts. Springer, Berlin, Heidelberg pp 77–93

    Google Scholar 

  • Braunegg G, Sonnleitner B, Lafferty R (1978) A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol Biotechnol 6:29–37

    Article  CAS  Google Scholar 

  • Brown MR, Barrett SM, Volkman JK, Nearhos SP, Nell JA, Allan GL (1996) Biochemical composition of new yeasts and bacteria evaluated as food for bivalve aquaculture. Aquaculture 143:341–360

    Article  CAS  Google Scholar 

  • Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319

    Article  CAS  PubMed  Google Scholar 

  • Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144

    Article  CAS  PubMed  Google Scholar 

  • Davidson PM, Taylor TM, Schmidt SE (2013) Chemical preservatives and natural antimicrobial compounds. In: Food microbiology. American Society of Microbiology, ASM Press, Washington, DC pp 765–801

    Google Scholar 

  • De Schryver P, Sinha AK, Kunwar PS, Baruah K, Verstraete W, Boon N, Boeck G, Bossier P (2010) Poly-β-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass, Dicentrarchus labrax. Appl Microbiol Biotechnol 86:1535–1541

    Article  CAS  PubMed  Google Scholar 

  • Defoirdt T, Halet D, Sorgeloos P, Bossier P, Verstraete W (2006) Short-chain fatty acids protect gnotobiotic Artemia franciscana from pathogenic Vibrio campbellii. Aquaculture 261:804–808

    Article  CAS  Google Scholar 

  • Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2007a) Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotechnol 25:472–479

    Article  CAS  PubMed  Google Scholar 

  • Defoirdt T, Halet D, Vervaeren H, Boon N, Van De Wiele T, Sorgeloos P, Bossier P, Verstraete W (2007b) The bacterial storage compound poly-beta-hydroxybutyrate protects Artemia franciscana from pathogenic Vibrio campbellii. Environ Microbiol 9:445–452

    Article  CAS  PubMed  Google Scholar 

  • Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2008) Quorum sensing and quorum quenching in Vibrio harveyi: lessons learned from in vivo work. ISME J 2:19

    Article  CAS  PubMed  Google Scholar 

  • Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2009) Short-chain fatty acids and poly-β-hydroxyalkanoates:(new) biocontrol agents for a sustainable animal production. Biotechnol Adv 27:680–685

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Zhang Y, Dong H, Wang Y, Zhang J (2017a) Effects of dietary poly-β-hydroxybutyrate (PHB) on microbiota composition and the mTOR signaling pathway in the intestines of Litopenaeus vannamei. J Microbiol 55:946–954

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Zhang Y, Dong H, Zheng X, Wang Y, Li H, Liu Q, Zhang J (2017b) Effect of dietary poly-β-hydroxybutyrate (PHB) on growth performance, intestinal health status and body composition of Pacific white shrimp Litopenaeus vannamei (Boone, 1931). Fish Shellfish Immunol 60:520–528

    Article  CAS  PubMed  Google Scholar 

  • Eklund T (1983) The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels. J Appl Microbiol 54:383–389

    CAS  Google Scholar 

  • Franke A, Clemmesen C, De Schryver P, Garcia-Gonzalez L, Miest JJ, Roth O (2017a) Immunostimulatory effects of dietary poly-β-hydroxybutyrate in European sea bass postlarvae. Aquac Res 48:5707–5717

    Article  CAS  Google Scholar 

  • Franke A, Roth O, De Schryver P, Bayer T, Garcia-Gonzalez L, Künzel S, Bossier P, Miest JJ, Clemmesen C (2017b) Poly-β-hydroxybutyrate administration during early life: effects on performance, immunity and microbial community of European sea bass yolk-sac larvae. Sci Rep 7:15022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griebel R, Smith Z, Merrick J (1968) Metabolism of poly (β-hydroxybutyrate). I. Purification, composition, and properties of native poly (β-hydroxybutyrate) granules from Bacillus megaterium. Biochemistry (Mosc) 7:3676–3681

    Article  CAS  Google Scholar 

  • Halet D, Defoirdt T, Van Damme P, Vervaeren H, Forrez I, Van de Wiele T, Boon N, Sorgeloos P, Bossier P, Verstraete W (2007) Poly-b-hydroxybutyrate-accumulating bacteria protect gnotobiotic Artemia franciscana from pathogenic Vibrio campbellii. FEMS Microbiol Ecol 60:363–369

    Article  CAS  PubMed  Google Scholar 

  • Hesselmann RP, Fleischmann T, Hany R, Zehnder AJ (1999) Determination of polyhydroxyalkanoates in activated sludge by ion chromatographic and enzymatic methods. J Microbiol Methods 35:111–119

    Article  CAS  PubMed  Google Scholar 

  • Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191:3195–3202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jendrossek D, Pfeiffer D (2014) New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly (3-hydroxybutyrate). Environ Microbiol 16:2357–2373

    Article  CAS  PubMed  Google Scholar 

  • Jendrossek D, Selchow O, Hoppert M (2007) Poly (3-hydroxybutyrate) granules at the early stages of formation are localized close to the cytoplasmic membrane in Caryophanon latum. Appl Environ Microbiol 73:586–593

    Article  CAS  PubMed  Google Scholar 

  • Johnson K, Kleerebezem R, van Loosdrecht MC (2010) Influence of the C/N ratio on the performance of polyhydroxybutyrate (PHB) producing sequencing batch reactors at short SRTs. Water Res 44:2141–2152

    Article  CAS  PubMed  Google Scholar 

  • Karr DB, Waters JK, Emerich DW (1983) Analysis of poly-β-hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-pressure liquid chromatography and UV detection. Appl Environ Microbiol 46:1339–1344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249

    Article  CAS  PubMed  Google Scholar 

  • Kiran GS, Lipton AN, Priyadharshini S, Anitha K, Suárez LEC, Arasu MV, Choi KC, Selvin J, Al-Dhabi NA (2014) Antiadhesive activity of poly-hydroxy butyrate biopolymer from a marine Brevibacterium casei MSI04 against shrimp pathogenic vibrios. Microb Cell Fact 13:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kiran GS, Priyadharshini S, Dobson AD, Gnanamani E, Selvin J (2016) Degradation intermediates of polyhydroxy butyrate inhibits phenotypic expression of virulence factors and biofilm formation in luminescent Vibrio sp. PUGSK8. NPJ Biofilms Microbiomes 2:16002

    Article  Google Scholar 

  • Knittle JL, Hirsch J (1965) Effect of chain length on rates of uptake of free fatty acids during in vitro incubations of rat adipose tissue. J Lipid Res 6:565–571

    CAS  PubMed  Google Scholar 

  • Koller M, Atlić A, Dias M, Reiterer A, Braunegg G (2010) Microbial PHA production from waste raw materials. In: Plastics from bacteria. Springer, Berlin, Heidelberg pp 85–119

    Google Scholar 

  • Kominek LA, Halvorson HO (1965) Metabolism of poly-β-hydroxybutyrate and acetoin in Bacillus cereus. J Bacteriol 90:1251–1259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar BS, Prabakaran G (2006) Production of PHB (bioplastics) using bio-effluent as substrate by Alcaligens eutrophus. Indian J Biotechnol 5:76–79

    CAS  Google Scholar 

  • Laranja JLQ (2017) Amorphous poly-β-hydroxybutyrate (PHB)-accumulating Bacillus spp. as biocontrol agents in crustacean culture. Ghent University, Ghent, p 262

    Google Scholar 

  • Laranja JLQ, Ludevese-Pascual GL, Amar EC, Sorgeloos P, Bossier P, De Schryver P (2014) Poly-β-hydroxybutyrate (PHB) accumulating Bacillus spp. improve the survival, growth and robustness of Penaeus monodon (Fabricius, 1798) postlarvae. Vet Microbiol 173:310–317

    Article  CAS  PubMed  Google Scholar 

  • Laranja JLQ, Amar EC, Ludevese-Pascual GL, Niu Y, Geaga MJ, De Schryver P, Bossier P (2017) A probiotic Bacillus strain containing amorphous poly-beta-hydroxybutyrate (PHB) stimulates the innate immune response of Penaeus monodon postlarvae. Fish Shellfish Immunol 68:202–210

    Article  CAS  PubMed  Google Scholar 

  • Laranja JLQ, De Schryver P, Ludevese-Pascual GL, Amar EC, Aerts M, Vandamme P, Bossier P (2018) High amorphous poly-beta-hydroxybutyrate (PHB) content in a probiotic Bacillus strain displays better protective effects in Vibrio-challenged gnotobiotic Artemia. Aquaculture 487:15–21

    Article  CAS  Google Scholar 

  • Law JH, Slepecky RA (1961) Assay of poly-beta-hydroxybutyric acid. J Bacteriol 82:33–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Poul E, Loison C, Struyf S, Springael J-Y, Lannoy V, Decobecq M-E, Brezillon S, Dupriez V, Vassart G, Van Damme J (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278:25481–25489

    Article  PubMed  CAS  Google Scholar 

  • Lee SY (1996) Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol 14:431–438

    Article  CAS  Google Scholar 

  • Lemoigne M (1923) Production d’acide β-oxybutyrique par certaines bactéries du groupe du Bacillus subtilis. C R Hebd Seances Acad Sci 176:1761

    CAS  Google Scholar 

  • Liu Y, De Schryver P, Van Delsen B, Maignien L, Boon N, Sorgeloos P, Verstraete W, Bossier P, Defoirdt T (2010) PHB-degrading bacteria isolated from the gastrointestinal tract of aquatic animals as protective actors against luminescent vibriosis. FEMS Microbiol Ecol 74:196–204

    Article  CAS  PubMed  Google Scholar 

  • Luckstadt C (2008) The use of acidifiers in fish nutrition. CAB Rev 3:1–8

    Article  CAS  Google Scholar 

  • Ludevese G (2016) Application and mode of action of the poly-β-hydroxybutyrate (PHB) in Penaeus culture. Ghent University, Ghent, Belgium

    Google Scholar 

  • Ludevese-Pascual G, Laranja JLQ, Amar EC, Sorgeloos P, Bossier P, De Schryver P (2017) Poly-beta-hydroxybutyrate-enriched Artemia sp. for giant tiger prawn Penaeus monodon larviculture. Aquac Nutr 23:422–429

    Article  CAS  Google Scholar 

  • Ludevese-Pascual G, Laranja JL, Amar E, Bossier P, De Schryver P (2018) Application of poly-β-hydroxybutyrate (PHB)-based biodegradable plastic as artificial substratum in Litopenaeus vannamei culture. J Polym Environ 27:1–9

    Article  CAS  Google Scholar 

  • Lundgren D, Pfister R, Merrick J (1964) Structure of poly-β-hydroxybutyric acid granules. Microbiology 34:441–446

    CAS  Google Scholar 

  • Lundin G (1996) Global attempts to address shrimp disease. Marine/environmental paper no. 4. Land, Water and Natural Habitats Division, Environment Department, The World Bank, Rome, p 45

    Google Scholar 

  • Mani-Lopez E, García HS, López-Malo A (2012) Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res Int 45:713–721

    Article  CAS  Google Scholar 

  • McHan F, Shotts EB (1993) Effect of short-chain fatty acids on the growth of Salmonella typhimurium in an in vitro system. Avian Dis 37:396–398

    Article  CAS  PubMed  Google Scholar 

  • Merrick J, Lundgren D, Pfister R (1965) Morphological changes in poly-β-hydroxybutyrate granules associated with decreased susceptibility to enzymatic hydrolysis. J Bacteriol 89:234–239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monica M, Priyanka T, Akshaya M, Rajeswari V, Sivakumar L, Somasundaram S, Shenbhagarathai R (2017) The efficacy of Poly-β-Hydroxy Butyrate (PHB)/biosurfactant derived from Staphylococcus hominis against White Spot Syndrome Virus (WSSV) in Penaeus monodon. Fish Shellfish Immunol 71:399–410

    Article  CAS  PubMed  Google Scholar 

  • Mudliar S, Vaidya A, Kumar MS, Dahikar S, Chakrabarti T (2008) Techno-economic evaluation of PHB production from activated sludge. Clean Techn Environ Policy 10:255

    Article  CAS  Google Scholar 

  • Najdegerami EH, Tran TN, Defoirdt T, Marzorati M, Sorgeloos P, Boon N, Bossier P (2012) Effects of poly-β-hydroxybutyrate (PHB) on Siberian sturgeon (Acipenser baerii) fingerlings performance and its gastrointestinal tract microbial community. FEMS Microbiol Ecol 79:25–33

    Article  CAS  PubMed  Google Scholar 

  • Najdegerami E, Bakhshi F, Tokmechi A, Shiri Harzevili A, Sorgeloos P, Bossier P (2015a) Dietary effects of poly-β-hydroxybutyrate on the growth performance, digestive enzyme activity, body composition, mineral uptake and bacterial challenge of rainbow trout fry (Oncorhynchus mykiss). Aquac Nutr 23:246–254

    Article  CAS  Google Scholar 

  • Najdegerami EH, Baruah K, Shiri A, Rekecki A, den Broeck W, Sorgeloos P, Boon N, Bossier P, Schryver P (2015b) Siberian sturgeon (Acipenser baerii) larvae fed Artemia nauplii enriched with poly-β-hydroxybutyrate (PHB): effect on growth performance, body composition, digestive enzymes, gut microbial community, gut histology and stress tests. Aquac Res 46:801–812

    Article  CAS  Google Scholar 

  • Nhan DT, Wille M, De Schryver P, Defoirdt T, Bossier P, Sorgeloos P (2010) The effect of poly-β-hydroxybutyrate on larviculture of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 302:76–81

    Article  CAS  Google Scholar 

  • Ostle AG, Holt J (1982) Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 44:238–241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247

    Article  CAS  Google Scholar 

  • Pötter M, Steinbüchel A (2005) Poly (3-hydroxybutyrate) granule-associated proteins: impacts on poly (3-hydroxybutyrate) synthesis and degradation. Biomacromolecules 6:552–560

    Article  PubMed  CAS  Google Scholar 

  • Pötter M, Steinbüchel A (2006) Biogenesis and structure of polyhydroxyalkanoate granules. In: Shively JM (ed) Inclusions in prokaryotes. Microbiology monographs, vol 1. Springer, Berlin/Heidelberg, pp 109–136

    Chapter  Google Scholar 

  • Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci U S A 101:4596–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricke S (2003) Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci 82:632–639

    Article  CAS  PubMed  Google Scholar 

  • Rombout J, Huttenhuis H, Picchietti S, Scapigliati G (2005) Phylogeny and ontogeny of fish leucocytes. Fish Shellfish Immunol 19:441–455

    Article  CAS  PubMed  Google Scholar 

  • Schönfeld P, Wojtczak L (2016) Short-and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res 57:943–954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheridan MA (1988) Lipid dynamics in fish: aspects of absorption, transportation, deposition and mobilization. Comp Biochem Physiol B Comp Biochem 90:679–690

    Article  CAS  Google Scholar 

  • Sheu CW, Konings WN, Freese E (1972) Effects of acetate and other short-chain fatty acids on sugar and amino acid uptake of Bacillus subtilis. J Bacteriol 111:525–530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin R, Suzuki M, Morishita Y (2002) Influence of intestinal anaerobes and organic acids on the growth of enterohaemorrhagic Escherichia coli O157: H7. J Med Microbiol 51:201–206

    Article  CAS  PubMed  Google Scholar 

  • Silva B, Jesus G, Seiffert W, Vieira F, Mouriño J, Jatobá A, Nolasco-Soria H (2018) The effects of dietary supplementation with butyrate and polyhydroxybutyrate on the digestive capacity and intestinal morphology of Pacific White Shrimp (Litopenaeus vannamei). Mar Freshw Behav Physiol 49:1–12

    Article  CAS  Google Scholar 

  • Sina C, Gavrilova O, Förster M, Till A, Derer S, Hildebrand F, Raabe B, Chalaris A, Scheller J, Rehmann A (2009) G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J Immunol 183:7514–7522

    Article  CAS  PubMed  Google Scholar 

  • Situmorang ML (2015) Application of poly-β-hydroxybutyrate in growth and health promotion of Nile tilapia Oreochromis niloticus culture. Ghent University, Ghent, Belgium

    Google Scholar 

  • Situmorang ML, De Schryver P, Dierckens K, Bossier P (2016) Effect of poly-β-hydroxybutyrate on growth and disease resistance of Nile tilapia Oreochromis niloticus juveniles. Vet Microbiol 182:44–49

    Article  CAS  PubMed  Google Scholar 

  • Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbüchel A (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80

    Article  CAS  PubMed  Google Scholar 

  • Stentiford G, Neil D, Peeler E, Shields J, Small H, Flegel T, Vlak J, Jones B, Morado F, Moss S (2012) Disease will limit future food supply from the global crustacean fishery and aquaculture sectors. J Invertebr Pathol 110:141–157

    Article  CAS  PubMed  Google Scholar 

  • Suguna P, Binuramesh C, Abirami P, Saranya V, Poornima K, Rajeswari V, Shenbagarathai R (2014) Immunostimulation by poly-β hydroxybutyrate–hydroxyvalerate (PHB–HV) from Bacillus thuringiensis in Oreochromis mossambicus. Fish Shellfish Immunol 36:90–97

    Article  CAS  PubMed  Google Scholar 

  • Sui L, Cai J, Sun H, Wille M, Bossier P (2012) Effect of poly-β-hydroxybutyrate on Chinese mitten crab, Eriocheir sinensis, larvae challenged with pathogenic Vibrio anguillarum. J Fish Dis 35:359–364

    Article  CAS  PubMed  Google Scholar 

  • Sui L, Liu Y, Sun H, Wille M, Bossier P, De Schryver P (2014) The effect of poly-β-hydroxybutyrate on the performance of Chinese mitten crab (Eriocheir sinensis Milne-Edwards) zoea larvae. Aquac Res 45:558–565

    Article  CAS  Google Scholar 

  • Thai TQ, Wille M, Garcia-Gonzalez L, Sorgeloos P, Bossier P, De Schryver P (2014) Poly-ß-hydroxybutyrate content and dose of the bacterial carrier for Artemia enrichment determine the performance of giant freshwater prawn larvae. Appl Microbiol Biotechnol 98:5205–5215

    Article  CAS  PubMed  Google Scholar 

  • Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valappil SP, Boccaccini AR, Bucke C, Roy I (2007) Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces. Antonie Van Leeuwenhoek 91:1–17

    Article  CAS  PubMed  Google Scholar 

  • Van Hung N, De Schryver P, Tam TT, Garcia-Gonzalez L, Bossier P, Nevejan N (2015) Application of poly-β-hydroxybutyrate (PHB) in mussel larviculture. Aquaculture 446:318–324

    Article  CAS  Google Scholar 

  • Van Immerseel F, De Buck J, Pasmans F, Velge P, Bottreau E, Fievez V, Haesebrouck F, Ducatelle R (2003) Invasion of Salmonella enteritidis in avian intestinal epithelial cells in vitro is influenced by short-chain fatty acids. Int J Food Microbiol 85:237–248

    Article  PubMed  CAS  Google Scholar 

  • Vázquez J, González MP, Murado M (2005) Effects of lactic acid bacteria cultures on pathogenic microbiota from fish. Aquaculture 245:149–161

    Article  Google Scholar 

  • Vinolo MA, Ferguson GJ, Kulkarni S, Damoulakis G, Anderson K, Bohlooly-Y M, Stephens L, Hawkins PT, Curi R (2011) SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS One 6:e21205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y-H, Chen W-C, Huang C-K, Wu H-S, Sun Y-M, Lo C-W, Janarthanan O-M (2011) Screening and evaluation of polyhydroxybutyrate-producing strains from indigenous isolate Cupriavidus taiwanensis strains. Int J Mol Sci 12:252–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weltzien F-A, Hemre G, Evjemo J, Olsen Y, Fyhn H (2000) β-Hydroxybutyrate in developing nauplii of brine shrimp (Artemia franciscana K.) under feeding and non-feeding conditions. Comp Biochem Physiol B Biochem Mol Biol 125:63–69

    Article  CAS  PubMed  Google Scholar 

  • Wilén B-M, Jin B, Lant P (2003) The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Res 37:2127–2139

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Plackett D, Chen LX (2005) Kinetics and mechanism of the monomeric products from abiotic hydrolysis of poly [(R)-3-hydroxybutyrate] under acidic and alkaline conditions. Polym Degrad Stab 89:289–299

    Article  CAS  Google Scholar 

  • Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53:5–21

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bossier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Laranja, J.L.Q., Bossier, P. (2019). Poly-Beta-Hydroxybutyrate (PHB) and Infection Reduction in Farmed Aquatic Animals. In: Goldfine, H. (eds) Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-72473-7_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72473-7_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72473-7

  • Online ISBN: 978-3-319-72473-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics