Skip to main content

Lipid Rafts in Bacteria: Structure and Function

  • Living reference work entry
  • First Online:
Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids

Abstract

“Lipid raft” is the term applied to transient lipid domains organized laterally within the plane of biological membranes. These structures are thought to range in size from tens to hundreds of nanometers and to be compositionally enriched in high-melting temperature lipids. These characteristics create different physical environments within the “rafts” and in the continuous lipid phase that surrounds them. Based on the principle of hydrophobic mismatch and other properties, membrane proteins preferentially partition into, or out of, the raft, facilitating protein interactions, which in turn regulate downstream cellular processes. Though better understood in the context of the eukaryotic cell membrane, microbial membranes also appear to utilize similar principles to organize their membranes – though their lipid compositions differ considerably from those of eukaryotic membranes. Raft-like structures have been directly observed in microorganisms such as Bacillus subtilis, and a number of functional roles for rafts are being investigated. Among these roles is the organization of proteins associated with antibiotic resistance in Staphylococcus aureus, further highlighting the importance of lipids and lipid rafts, in biology and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmed SN, Brown DA, London E (1997) On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36:10944–10953

    Article  CAS  PubMed  Google Scholar 

  • Alexander C, Rietschel ET (2001) Invited review: bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7:167–202

    CAS  PubMed  Google Scholar 

  • Allen JA, Halverson-Tamboli RA, Rasenick MM (2007) Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 8:128–140

    Article  CAS  PubMed  Google Scholar 

  • Almeida PF, Vaz WL, Thompson T (1992) Lateral diffusion and percolation in two-phase, two-component lipid bilayers. Topology of the solid-phase domains in-plane and across the lipid bilayer. Biochemistry 31:7198–7210

    Article  CAS  PubMed  Google Scholar 

  • Andersen OS, Koeppe RE (2007) Bilayer thickness and membrane protein function: an energetic perspective. Annu Rev Biophys Biomol Struct 36:107–130

    Article  CAS  PubMed  Google Scholar 

  • Bacia K, Scherfeld D, Kahya N, Schwille P (2004) Fluorescence correlation spectroscopy relates rafts in model and native membranes. Biophys J 87:1034–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagatolli L, Gratton E (2000) Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys J 78:290–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumgart T, Hess ST, Webb WW (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425:821–824

    Article  CAS  PubMed  Google Scholar 

  • Baumgart T, Hammond AT, Sengupta P, Hess ST, Holowka DA, Baird BA, Webb WW (2007a) Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc Natl Acad Sci 104:3165–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumgart T, Hunt G, Farkas ER, Webb WW, Feigenson GW (2007b) Fluorescence probe partitioning between L o/L d phases in lipid membranes. Biochim Biophys Acta Biomembr 1768:2182–2194

    Article  CAS  Google Scholar 

  • Bee M (1988) Quasielastic neutron scattering: prinicples and applications in solid state chemistry, biology, and materials science. Adam Hilger, Bristol

    Google Scholar 

  • Ben-Menachem G, Kubler-Kielb J, Coxon B, Yergey A, Schneerson R (2003) A newly discovered cholesteryl galactoside from Borrelia burgdorferi. Proc Natl Acad Sci U S A 100:7913–7918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloembergen N (1957) Proton relaxation times in paramagnetic solutions. J Chem Phys 27:572–573

    Article  CAS  Google Scholar 

  • Botos I, Majdalani N, Mayclin SJ, Mccarthy JG, Lundquist K, Wojtowicz D, Barnard TJ, Gumbart JC, Buchanan SK (2016) Structural and functional characterization of the LPS transporter LptDE from gram-negative pathogens. Structure 24:965–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boucher Y, Kamekura M, Doolittle WF (2004) Origins and evolution of isoprenoid lipid biosynthesis in archaea. Mol Microbiol 52:515–527

    Article  CAS  PubMed  Google Scholar 

  • Bramkamp M, Lopez D (2015) Exploring the existence of lipid rafts in Bacteria. Microbiol Mol Biol Rev 79:81–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browman DT, Hoegg MB, Robbins SM (2007) The SPFH domain-containing proteins: more than lipid raft markers. Trends Cell Biol 17:394–402

    Article  CAS  PubMed  Google Scholar 

  • Brown KL, Conboy JC (2013) Lipid flip-flop in binary membranes composed of phosphatidylserine and phosphatidylcholine. J Phys Chem B 117:15041–15050

    Article  CAS  PubMed  Google Scholar 

  • Brown D, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, London E (2000) Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224

    Article  CAS  PubMed  Google Scholar 

  • Brown MF, Ribeiro AA, Williams GD (1983) New view of lipid bilayer dynamics from 2H and 13C NMR relaxation time measurements. Proc Natl Acad Sci 80:4325–4329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Büldt G, Gally H, Seelig A, Seelig J, Zaccai G (1978) Neutron diffraction studies on selectively deuterated phospholipid bilayers. Nature 271:182

    Article  PubMed  Google Scholar 

  • Büldt G, Gally H, Seelig J, Zaccai G (1979) Neutron diffraction studies on phosphatidylcholine model membranes: I. Head group conformation. J Mol Biol 134:673–691

    Article  PubMed  Google Scholar 

  • Cantor RS (1997) The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Biochemistry 36:2339–2344

    Article  CAS  PubMed  Google Scholar 

  • Carrasco S, Mérida I (2007) Diacylglycerol, when simplicity becomes complex. Trends Biochem Sci 32:27–36

    Article  CAS  PubMed  Google Scholar 

  • Christensen H, Garton NJ, Horobin RW, Minnikin DE, Barer MR (1999) Lipid domains of mycobacteria studied with fluorescent molecular probes. Mol Microbiol 31:1561–1572

    Article  CAS  PubMed  Google Scholar 

  • Crowley JT, Toledo AM, Larocca TJ, Coleman JL, London E, Benach JL (2013) Lipid exchange between Borrelia burgdorferi and host cells. PLoS Pathog 9:e1003109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czamara K, Majzner K, Pacia MZ, Kochan K, Kaczor A, Baranska M (2015) Raman spectroscopy of lipids: a review. J Raman Spectrosc 46:4–20

    Article  CAS  Google Scholar 

  • Daley DO, Rapp M, Granseth E, Melén K, Drew D, Von Heijne G (2005) Global topology analysis of the Escherichia coli inner membrane proteome. Science 308:1321–1323

    Article  CAS  PubMed  Google Scholar 

  • Davis JH (1983) The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim Biophys Acta Rev Biomembr 737:117–171

    Article  CAS  Google Scholar 

  • Day CA, Kenworthy AK (2015) Functions of cholera toxin B-subunit as a raft cross-linker. Essays Biochem 57:135–145

    Article  PubMed  PubMed Central  Google Scholar 

  • De Almeida RF, Loura LM, Fedorov A, Prieto M (2005) Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study. J Mol Biol 346:1109–1120

    Article  CAS  PubMed  Google Scholar 

  • Del Pozo MA, Alderson NB, Kiosses WB, Chiang H-H, Anderson RG, Schwartz MA (2004) Integrins regulate Rac targeting by internalization of membrane domains. Science 303:839–842

    Article  CAS  PubMed  Google Scholar 

  • Den Kamp JO, Redai I, Van Deenen L (1969) Phospholipid composition of Bacillus subtilis. J Bacteriol 99:298–303

    Google Scholar 

  • Derzko Z, Jacobson K (1980) Comparative lateral diffusion of fluorescent lipid analogs in phospholipid multibilayers. Biochemistry 19:6050–6057

    Article  CAS  PubMed  Google Scholar 

  • Dick RA, Goh SL, Feigenson GW, Vogt VM (2012) HIV-1 Gag protein can sense the cholesterol and acyl chain environment in model membranes. Proc Natl Acad Sci 109:18761–18766

    Article  PubMed  PubMed Central  Google Scholar 

  • Dietrich C, Bagatolli L, Volovyk Z, Thompson N, Levi M, Jacobson K, Gratton E (2001) Lipid rafts reconstituted in model membranes. Biophys J 80:1417–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edidin M (2003) The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct 32:257–283

    Article  CAS  PubMed  Google Scholar 

  • Engelman DM (1971) Lipid bilayer structure in the membrane of mycoplasma laidlawii. J Mol Biol 58:153–165

    Article  CAS  PubMed  Google Scholar 

  • Epand RM, Epand RF (2009) Domains in bacterial membranes and the action of antimicrobial agents. Mol BioSyst 5:580–587

    Article  CAS  PubMed  Google Scholar 

  • Fattal E, Nir S, Parente RA, Szoka FC Jr (1994) Pore-forming peptides induce rapid phospholipid flip-flop in membranes. Biochemistry 33:6721–6731

    Article  CAS  PubMed  Google Scholar 

  • Feigenson GW (2009) Phase diagrams and lipid domains in multicomponent lipid bilayer mixtures. Biochim Biophys Acta Biomembr 1788:47–52

    Article  CAS  Google Scholar 

  • Fishov I, Woldringh CL (1999) Visualization of membrane domains in Escherichia coli. Mol Microbiol 32:1166–1172

    Article  CAS  PubMed  Google Scholar 

  • Gajate C, Mollinedo F (2001) The antitumor ether lipid ET-18-OCH3 induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood 98:3860–3863

    Article  CAS  PubMed  Google Scholar 

  • García-Fernández E, Koch G, Wagner RM, Fekete A, Stengel ST, Schneider J, Mielich-Süss B, Geibel S, Markert SM, Stigloher C, Lopez D (2017) Membrane microdomain disassembly inhibits MRSA antibiotic resistance. Cell 171:1354–1367.e20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Sáez AJ, Chiantia S, Schwille P (2007) Effect of line tension on the lateral organization of lipid membranes. J Biol Chem 282:33537–33544

    Article  CAS  PubMed  Google Scholar 

  • Gaus K, Gratton E, Kable EP, Jones AS, Gelissen I, Kritharides L, Jessup W (2003) Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci 100:15554–15559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gidden J, Denson J, Liyanage R, Ivey DM, Lay JO (2009) Lipid compositions in Escherichia coli and Bacillus subtilis during growth as determined by MALDI-TOF and TOF/TOF mass spectrometry. Int J Mass Spectrom 283:178–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goksu EI, Vanegas JM, Blanchette CD, Lin WC, Longo M (2009) AFM for structure and dynamics of biomembranes. Biochim Biophys Acta 1788:254–266

    Article  CAS  PubMed  Google Scholar 

  • Gross JD, Warschawski DE, Griffin RG (1997) Dipolar recoupling in MAS NMR: a probe for segmental order in lipid bilayers. J Am Chem Soc 119:796–802

    Article  CAS  Google Scholar 

  • Haines TH (2001) Do sterols reduce proton and sodium leaks through lipid bilayers? Prog Lipid Res 40:299–324

    Article  CAS  PubMed  Google Scholar 

  • Heberle FA, Petruzielo RS, Pan J, Drazba P, KučErka N, Standaert RF, Feigenson GW, Katsaras J (2013) Bilayer thickness mismatch controls domain size in model membranes. J Am Chem Soc 135:6853–6859

    Article  CAS  PubMed  Google Scholar 

  • Heberle FA, Marquardt D, Doktorova M, Geier B, Standaert RF, Heftberger P, Kollmitzer B, Nickels JD, Dick RA, Feigenson GW (2016) Sub-nanometer structure of an asymmetric model membrane: interleaflet coupling influences domain properties. Langmuir 32:5195–5200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heftberger P, Kollmitzer B, Rieder AA, Amenitsch H, Pabst G (2015) In situ determination of structure and fluctuations of coexisting fluid membrane domains. Biophys J 108:854–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung C 28:693–703

    Article  CAS  Google Scholar 

  • Henderson TO, Glonek T, Myers TC (1974) Phosphorus-31 nuclear magnetic resonance spectroscopy of phospholipids. Biochemistry 13:623–628

    Article  CAS  PubMed  Google Scholar 

  • Hering H, Lin C-C, Sheng M (2003) Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci 23:3262–3271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyn MP (1979) Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments. FEBS Lett 108:359–364

    Article  CAS  PubMed  Google Scholar 

  • Honerkamp-Smith AR, Cicuta P, Collins MD, Veatch SL, Den Nijs M, Schick M, Keller SL (2008) Line tensions, correlation lengths, and critical exponents in lipid membranes near critical points. Biophys J 95:236–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong M, Schmidt-Rohr K, Pines A (1995) NMR measurement of signs and magnitudes of CH dipolar couplings in lecithin. J Am Chem Soc 117:3310–3311

    Article  CAS  Google Scholar 

  • Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson K, Mouritsen OG, Anderson RG (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14

    Article  CAS  PubMed  Google Scholar 

  • Jacrot B (1976) The study of biological structures by neutron scattering from solution. Rep Prog Phys 39:911

    Article  CAS  Google Scholar 

  • Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    Article  CAS  PubMed  Google Scholar 

  • Jerabek H, Pabst G, Rappolt M, Stockner T (2010) Membrane-mediated effect on ion channels induced by the anesthetic drug ketamine. J Am Chem Soc 132:7990–7997

    Article  CAS  PubMed  Google Scholar 

  • Johnson RC (1977) The Spirochetes. Annu Rev Microbiol 31:89–106

    Article  CAS  PubMed  Google Scholar 

  • Johnston LJ (2007) Nanoscale imaging of domains in supported lipid membranes. Langmuir 23:5886–5895

    Article  CAS  PubMed  Google Scholar 

  • Kabouridis PS, Janzen J, Magee AL, Ley SC (2000) Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple signaling pathways in T lymphocytes. Eur J Immunol 30:954–963

    Article  CAS  PubMed  Google Scholar 

  • Kawai F, Shoda M, Harashima R, Sadaie Y, Hara H, Matsumoto K (2004) Cardiolipin domains in Bacillus subtilis Marburg membranes. J Bacteriol 186:1475–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenworthy AK, Petranova N, Edidin M (2000) High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol Biol Cell 11:1645–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klymchenko AS, Kreder R (2014) Fluorescent probes for lipid rafts: from model membranes to living cells. Chem Biol 21:97–113

    Article  CAS  PubMed  Google Scholar 

  • Knoll W, Ibel K, Sackmann E (1981) Small-angle neutron scattering study of lipid phase diagrams by the contrast variation method. Biochemistry 20:6379–6383

    Article  CAS  PubMed  Google Scholar 

  • Koenig BW, Strey HH, Gawrisch K (1997) Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation. Biophys J 73:1954–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • König S, Pfeiffer W, Bayerl T, Richter D, Sackmann E (1992) Molecular dynamics of lipid bilayers studied by incoherent quasi-elastic neutron scattering. J Phys II 2:1589–1615

    Google Scholar 

  • König S, Sackmann E, Richter D, Zorn R, Carlile C, Bayerl T (1994) Molecular dynamics of water in oriented DPPC multilayers studied by quasielastic neutron scattering and deuterium-nuclear magnetic resonance relaxation. J Chem Phys 100:3307

    Article  Google Scholar 

  • Korlach J, Schwille P, Webb WW, Feigenson GW (1999) Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci 96:8461–8466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft ML, Weber PK, Longo ML, Hutcheon ID, Boxer SG (2006) Phase separation of lipid membranes analyzed with high-resolution secondary ion mass spectrometry. Science 313:1948–1951

    Article  CAS  PubMed  Google Scholar 

  • Kreiswirth B, Kornblum J, Arbeit R, Eisner W, Maslow J, Mcgeer A, Low D, Novick R (1993) Evidence for a clonal origin of methicillin resistance in Staphylococcus aureus. Science 259:227–230

    Article  CAS  PubMed  Google Scholar 

  • Krogh A, Larsson B, Von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  • Kusumi A, Tsuda M, Akino T, Ohnishi S, Terayama Y (1983) Protein-phospholipid-cholesterol interaction in the photolysis of invertebrate rhodopsin. Biochemistry 22:1165–1170

    Article  CAS  PubMed  Google Scholar 

  • Kuzmin PI, Akimov SA, Chizmadzhev YA, Zimmerberg J, Cohen FS (2005) Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt. Biophys J 88:1120–1133

    Article  CAS  PubMed  Google Scholar 

  • Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Antonie Van Leeuwenhoek 74:59–70

    Article  CAS  PubMed  Google Scholar 

  • Langhorst MF, Reuter A, Stuermer CAO (2005) Scaffolding microdomains and beyond: the function of reggie/flotillin proteins. Cell Mol Life Sci 62:2228–2240

    Article  CAS  PubMed  Google Scholar 

  • Langhorst MF, Solis GP, Hannbeck S, Plattner H, Stuermer CAO (2007) Linking membrane microdomains to the cytoskeleton: regulation of the lateral mobility of reggie-1/flotillin-2 by interaction with actin. FEBS Lett 581:4697–4703

    Article  CAS  PubMed  Google Scholar 

  • Larocca TJ, Crowley JT, Cusack BJ, Pathak P, Benach J, London E, Garcia-Monco JC, Benach JL (2010) Cholesterol lipids of Borrelia burgdorferi form lipid rafts and are required for the bactericidal activity of a complement-independent antibody. Cell Host Microbe 8:331–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis BA, Engelman DM (1983) Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J Mol Biol 166:211–217

    Article  CAS  PubMed  Google Scholar 

  • Lewis RN, Mcelhaney RN (2013) Membrane lipid phase transitions and phase organization studied by Fourier transform infrared spectroscopy. Biochim Biophys Acta Biomembr 1828:2347–2358

    Article  CAS  Google Scholar 

  • Li L, Wang H, Cheng J-X (2005) Quantitative coherent anti-stokes Raman scattering imaging of lipid distribution in coexisting domains. Biophys J 89:3480–3490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindblom G, Orädd G, Filippov A (2006) Lipid lateral diffusion in bilayers with phosphatidylcholine, sphingomyelin and cholesterol: an NMR study of dynamics and lateral phase separation. Chem Phys Lipids 141:179–184

    Article  CAS  PubMed  Google Scholar 

  • Linden CD, Wright KL, Mcconnell HM, Fox CF (1973) Lateral phase separations in membrane lipids and the mechanism of sugar transport in Escherichia coli. Proc Natl Acad Sci 70:2271–2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lingwood D, Simons K (2007) Detergent resistance as a tool in membrane research. Nat Protoc 2:2159–2165

    Article  CAS  PubMed  Google Scholar 

  • Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Conboy JC (2004) Phase transition of a single lipid bilayer measured by sum-frequency vibrational spectroscopy. J Am Chem Soc 126:8894–8895

    Article  CAS  PubMed  Google Scholar 

  • London E, Brown DA (2000) Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim Biophys Acta Biomembr 1508:182–195

    Article  CAS  Google Scholar 

  • Lopez D, Koch G (2017) Exploring functional membrane microdomains in bacteria: an overview. Curr Opin Microbiol 36:76–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López D, Kolter R (2010) Functional microdomains in bacterial membranes. Genes Dev 24:1893–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luzzati V, Husson F (1962) The structure of the liquid-crystalline phases of lipid-water systems. J Cell Biol 12:207–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majewski J, Kuhl T, Kjaer K, Smith G (2001) Packing of ganglioside-phospholipid monolayers: an x-ray diffraction and reflectivity study. Biophys J 81:2707–2715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquardt D, Williams JA, KučErka N, Atkinson J, Wassall SR, Katsaras J, Harroun TA (2013) Tocopherol activity correlates with its location in a membrane: a new perspective on the antioxidant vitamin E. J Am Chem Soc 135:7523–7533

    Article  CAS  PubMed  Google Scholar 

  • Marquardt D, Heberle FA, Nickels JD, Pabst G, Katsaras J (2015) On scattered waves and lipid domains: detecting membrane rafts with X-rays and neutrons. Soft Matter 11:9055–9072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh D (2009) Cholesterol-induced fluid membrane domains: a compendium of lipid-raft ternary phase diagrams. Biochim Biophys Acta Biomembr 1788:2114–2123

    Article  CAS  Google Scholar 

  • Marshall JH, Wilmoth GJ (1981) Pigments of Staphylococcus aureus, a series of triterpenoid carotenoids. J Bacteriol 147:900–913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto K, Kusaka J, Nishibori A, Hara H (2006) Lipid domains in bacterial membranes. Mol Microbiol 61:1110–1117

    Article  CAS  PubMed  Google Scholar 

  • Mendelsohn R, Moore DJ (1998) Vibrational spectroscopic studies of lipid domains in biomembranes and model systems. Chem Phys Lipids 96:141–157

    Article  CAS  PubMed  Google Scholar 

  • Mileykovskaya E, Dowhan W (2000) Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J Bacteriol 182:1172–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills TT, Toombes GE, Tristram-Nagle S, Smilgies D-M, Feigenson GW, Nagle JF (2008) Order parameters and areas in fluid-phase oriented lipid membranes using wide angle X-ray scattering. Biophys J 95:669–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouritsen OG, Jørgensen K (1994) Dynamical order and disorder in lipid bilayers. Chem Phys Lipids 73:3–25

    Article  CAS  PubMed  Google Scholar 

  • Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta Rev Biomembr 1469:159–195

    Article  CAS  Google Scholar 

  • Nichols BJ (2003) GM1-containing lipid rafts are depleted within Clathrin-coated pits. Curr Biol 13:686–690

    Article  CAS  PubMed  Google Scholar 

  • Nichols BJ, Kenworthy AK, Polishchuk RS, Lodge R, Roberts TH, Hirschberg K, Phair RD, Lippincott-Schwartz J (2001) Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J Cell Biol 153:529–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nickels JD, Katsaras J (2015) Water and lipid bilayers. In: Membrane hydration. Springer International Publishing, Switzerland

    Google Scholar 

  • Nickels JD, O’neill H, Hong L, Tyagi M, Ehlers G, Weiss KL, Zhang Q, Yi Z, Mamontov E, Smith JC (2012) Dynamics of protein and its hydration water: neutron scattering studies on fully deuterated GFP. Biophys J 103:1566–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nickels JD, Cheng X, Mostofian B, Stanley C, Lindner B, Heberle FA, Perticaroli S, Feygenson M, Egami T, Standaert RF, Smith JC, Myles DAA, Ohl M, Katsaras J (2015a) Mechanical properties of Nanoscopic lipid domains. J Am Chem Soc 137:15772–15780

    Article  CAS  PubMed  Google Scholar 

  • Nickels JD, Smith JC, Cheng X (2015b) Lateral organization, bilayer asymmetry, and inter-leaflet coupling of biological membranes. Chem Phys Lipids 192:87–99

    Article  CAS  PubMed  Google Scholar 

  • Nickels JD, Atkinson J, Papp-Szabo E, Stanley C, Diallo SO, Perticaroli S, Baylis B, Mahon P, Ehlers G, Katsaras J, Dutcher JR (2016) Structure and hydration of highly-branched, Monodisperse Phytoglycogen nanoparticles. Biomacromolecules 17:735–743

    Article  CAS  PubMed  Google Scholar 

  • Nickels JD, Chatterjee S, Mostofian B, Stanley CB, Ohl M, Zolnierczuk P, Schulz R, Myles DA, Standaert RF, Elkins JG (2017a) Bacillus subtilis lipid extract, A branched-chain fatty acid model membrane. J Phys Chem Lett 8:4214–4217

    Article  CAS  PubMed  Google Scholar 

  • Nickels JD, Chatterjee S, Stanley CB, Qian S, Cheng X, Myles DAA, Standaert RF, Elkins JG, Katsaras J (2017b) The in vivo structure of biological membranes and evidence for lipid domains. PLoS Biol 15:e2002214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nickels JD, Smith MD, Alsop RJ, Himbert S, Yahya A, Cordner D, Zolnierczuk P, Stanley CB, Katsaras J, Cheng X, Rheinstadter MC (2019) Lipid rafts: buffers of cell membrane physical properties. J Phys Chem B 123:2050–2056

    Google Scholar 

  • Niño BJ, Marc B (2013) Flotillins functionally organize the bacterial membrane. Mol Microbiol 88:1205–1217

    Article  CAS  Google Scholar 

  • Nishibori A, Kusaka J, Hara H, Umeda M, Matsumoto K (2005) Phosphatidylethanolamine domains and localization of phospholipid synthases in Bacillus subtilis membranes. J Bacteriol 187:2163–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opilik L, Bauer T, Schmid T, Stadler J, Zenobi R (2011) Nanoscale chemical imaging of segregated lipid domains using tip-enhanced Raman spectroscopy. Phys Chem Chem Phys 13:9978–9981

    Article  CAS  PubMed  Google Scholar 

  • Orädd G, Lindblom G (2004) Lateral diffusion studied by pulsed field gradient NMR on oriented lipid membranes. Magn Reson Chem 42:123–131

    Article  CAS  PubMed  Google Scholar 

  • Orädd G, Westerman PW, Lindblom G (2005) Lateral diffusion coefficients of separate lipid species in a ternary raft-forming bilayer: a Pfg-NMR multinuclear study. Biophys J 89:315–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen DM, Rentero C, Magenau A, Abu-Siniyeh A, Gaus K (2012) Quantitative imaging of membrane lipid order in cells and organisms. Nat Protoc 7:24

    Article  CAS  Google Scholar 

  • Pardon J, Worcester D, Wooley J, Tatchell K, Van Holde K, Richards B (1975) Low-angle neutron scattering from chromatin subunit particles. Nucleic Acids Res 2:2163–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons JB, Rock CO (2013) Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 52:249–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parton RG (1994) Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J Histochem Cytochem 42:155–166

    Article  CAS  PubMed  Google Scholar 

  • Pelz A, Wieland K-P, Putzbach K, Hentschel P, Albert K, Götz F (2005) Structure and biosynthesis of Staphyloxanthin from Staphylococcus aureus. J Biol Chem 280:32493–32498

    Article  CAS  PubMed  Google Scholar 

  • Pencer J, Mills T, Anghel V, Krueger S, Epand RM, Katsaras J (2005) Detection of submicron-sized raft-like domains in membranes by small-angle neutron scattering. Eur Phys J E 18:447–458

    Article  CAS  PubMed  Google Scholar 

  • Percy MG, Gründling A (2014) Lipoteichoic acid synthesis and function in gram-positive Bacteria. Annu Rev Microbiol 68:81–100

    Article  CAS  PubMed  Google Scholar 

  • Perticaroli S, Ehlers G, Stanley CB, Mamontov E, O’neill H, Zhang Q, Cheng X, Myles DA, Katsaras J, Nickels JD (2017) Description of hydration water in protein (green fluorescent protein) solution. J Am Chem Soc 139:1098–1105

    Article  CAS  PubMed  Google Scholar 

  • Petrache HI, Dodd SW, Brown MF (2000) Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by 2H NMR spectroscopy. Biophys J 79:3172–3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer W, Henkel T, Sackmann E, Knoll W, Richter D (1989) Local dynamics of lipid bilayers studied by incoherent quasi-elastic neutron scattering. EPL (Europhys Lett) 8:201

    Article  CAS  Google Scholar 

  • Pfeiffer A, Böttcher A, Orsó E, Kapinsky M, Nagy P, Bodnár A, Spreitzer I, Liebisch G, Drobnik W, Gempel K (2001) Lipopolysaccharide and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. Eur J Immunol 31:3153–3164

    Article  CAS  PubMed  Google Scholar 

  • Pierce SK (2002) Lipid rafts and B-cell activation. Nat Rev Immunol 2:96–105

    Article  CAS  PubMed  Google Scholar 

  • Pike L (2004) Lipid rafts: heterogeneity on the high seas. Biochem J 378:281–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poger D, Mark AE (2013) The relative effect of sterols and hopanoids on lipid bilayers: when comparable is not identical. J Phys Chem B 117:16129–16140

    Article  CAS  PubMed  Google Scholar 

  • Potma EO, Xie XS (2005) Direct visualization of lipid phase segregation in single lipid bilayers with coherent anti-stokes Raman scattering microscopy. ChemPhysChem 6:77–79

    Article  CAS  PubMed  Google Scholar 

  • Pralle A, Keller P, Florin E-L, Simons K, Hörber J (2000) Sphingolipid–cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 148:997–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rheinstädter M, Ollinger C, Fragneto G, Demmel F, Salditt T (2004) Collective dynamics of lipid membranes studied by inelastic neutron scattering. Phys Rev Lett 93:108107

    Article  CAS  PubMed  Google Scholar 

  • Rohmer M, Bouvier-Nave P, Ourisson G (1984) Distribution of hopanoid triterpenes in prokaryotes. Microbiology 130:1137–1150

    Article  CAS  Google Scholar 

  • Rothberg KG, Ying Y-S, Kamen BA, Anderson R (1990) Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate. J Cell Biol 111:2931–2938

    Article  CAS  PubMed  Google Scholar 

  • Sáenz JP, Sezgin E, Schwille P, Simons K (2012) Functional convergence of hopanoids and sterols in membrane ordering. Proc Natl Acad Sci 109:14236–14240

    Article  PubMed  PubMed Central  Google Scholar 

  • Samsonov AV, Mihalyov I, Cohen FS (2001) Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes. Biophys J 81:1486–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheidt HA, Huster D, Gawrisch K (2005) Diffusion of cholesterol and its precursors in lipid membranes studied by 1H pulsed field gradient magic angle spinning NMR. Biophys J 89:2504–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider J, Mielich-Süss B, Böhme R, Lopez D (2015) In vivo characterization of the scaffold activity of flotillin on the membrane kinase KinC of Bacillus subtilis. Microbiology 161:1871–1887

    Article  CAS  PubMed  Google Scholar 

  • Schroeder R, London E, Brown D (1994) Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci 91:12130–12134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz ZD, Levin IW (2008) Lipid microdomain formation: characterization by infrared spectroscopy and ultrasonic velocimetry. Biophys J 94:3104–3114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schütz GJ, Kada G, Pastushenko VP, Schindler H (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19:892–901

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwille P, Korlach J, Webb WW (1999) Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry A 36:176–182

    Article  CAS  Google Scholar 

  • Sears VF (1992) Neutron scattering lengths and cross sections. Neutron News 3:26–37

    Article  Google Scholar 

  • Seelig A, Seelig J (1974) Dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry 13:4839–4845

    Article  CAS  PubMed  Google Scholar 

  • Settles M, Doster W (1996) Anomalous diffusion of adsorbed water: a neutron scattering study of hydrated myoglobin. Faraday Discuss 103:269–279

    Article  CAS  Google Scholar 

  • Seul M, Andelman D (1995) Domain shapes and patterns: the phenomenology of modulated phases. Science 267:476–483

    Article  CAS  PubMed  Google Scholar 

  • Sezgin E, Levental I, Grzybek M, Schwarzmann G, Mueller V, Honigmann A, Vn B (2012) Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim Biophys Acta 1818:1777–1784

    Article  CAS  PubMed  Google Scholar 

  • Sezgin E, Levental I, Mayor S, Eggeling C (2017a) The mystery of membrane organization: composition, regulation and physiological relevance of lipid rafts. Nat Rev Mol Cell Biol 18:361–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sezgin E, Levental I, Mayor S, Eggeling C (2017b) The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 18:361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimshick EJ, Mcconnell HM (1973) Lateral phase separation in phospholipid membranes. Biochemistry 12:2351–2360

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11:688–699

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202

    Article  CAS  PubMed  Google Scholar 

  • Singer S, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 18:720–31

    Google Scholar 

  • Sohlenkamp C, Geiger O (2016) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40:133–159

    Article  CAS  PubMed  Google Scholar 

  • Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99:559

    Article  CAS  Google Scholar 

  • Stöckl M, Herrmann A (2010) Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy. Biochim Biophys Acta 1798:1444–1456

    Article  CAS  PubMed  Google Scholar 

  • Stuermer CA, Lang DM, Kirsch F, Wiechers M, Deininger S-O, Plattner H (2001) Glycosylphosphatidyl inositol-anchored proteins and fyn kinase assemble in noncaveolar plasma membrane microdomains defined by reggie-1 and-2. Mol Biol Cell 12:3031–3045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su Y, Mani R, Hong M (2008) Asymmetric insertion of membrane proteins in lipid bilayers by solid-state NMR paramagnetic relaxation enhancement: a cell-penetrating peptide example. J Am Chem Soc 130:8856–8864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swenson J, Kargl F, Berntsen P, Svanberg C (2008) Solvent and lipid dynamics of hydrated lipid bilayers by incoherent quasielastic neutron scattering. J Chem Phys 129:045101

    Article  CAS  PubMed  Google Scholar 

  • Tardieu A, Luzzati V, Reman F (1973) Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol 75:711–733

    Article  CAS  PubMed  Google Scholar 

  • Tavernarakis N, Driscoll M, Kyrpides NC (1999) The SPFH domain: implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins. Trends Biochem Sci 24:425–427

    Article  CAS  PubMed  Google Scholar 

  • Tokumasu F, Jin AJ, Feigenson GW, Dvorak JA (2003) Nanoscopic lipid domain dynamics revealed by atomic force microscopy. Biophys J 84:2609–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toppozini L, Roosen-Runge F, Bewley RI, Dalgliesh RM, Perring T, Seydel T, Glyde HR, Garcia Sakai V, Rheinstadter MC (2015) Anomalous and anisotropic nanoscale diffusion of hydration water molecules in fluid lipid membranes. Soft Matter 11:8354–8371

    Article  CAS  PubMed  Google Scholar 

  • Turner MS, Sens P, Socci ND (2005) Nonequilibrium raftlike membrane domains under continuous recycling. Phys Rev Lett 95:168301

    Article  CAS  PubMed  Google Scholar 

  • Van Der Goot FG, Harder T (2001) Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Semin Immunol 13:89–97

    Article  CAS  PubMed  Google Scholar 

  • Van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vance JE, Vance DE (1985) The role of phosphatidylcholine biosynthesis in the secretion of lipoproteins from hepatocytes. Can J Biochem Cell Biol 63:870–881

    Article  CAS  PubMed  Google Scholar 

  • Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394:798

    Article  CAS  PubMed  Google Scholar 

  • Veatch SL, Keller SL (2002) Organization in lipid membranes containing cholesterol. Phys Rev Lett 89:268101

    Article  CAS  PubMed  Google Scholar 

  • Veatch SL, Keller SL (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys J 85:3074–3083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veatch S, Polozov I, Gawrisch K, Keller S (2004) Liquid domains in vesicles investigated by NMR and fluorescence microscopy. Biophys J 86:2910–2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verkleij A, Zwaal R, Roelofsen B, Comfurius P, Kastelijn D, Van Deenen L (1973) The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta Biomembr 323:178–193

    Article  CAS  Google Scholar 

  • Villalba M, Bi K, Rodriguez F, Tanaka Y, Schoenberger S, Altman A (2001) Vav1/Rac-dependent actin cytoskeleton reorganization is required for lipid raft clustering in T cells. J Cell Biol 155:331–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakasugi K, Nakano T, Kitatsuji C, Morishima I (2004) Human neuroglobin interacts with flotillin-1, a lipid raft microdomain-associated protein. Biochem Biophys Res Commun 318:453–460

    Article  CAS  PubMed  Google Scholar 

  • Watson MC, Brown FL (2010) Interpreting membrane scattering experiments at the mesoscale: the contribution of dissipation within the bilayer. Biophys J 98:L9–L11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wieland B, Feil C, Gloria-Maercker E, Thumm G, Lechner M, Bravo JM, Poralla K, Götz F (1994) Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4′-diaponeurosporene of Staphylococcus aureus. J Bacteriol 176:7719–7726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodka AC, Butler PD, Porcar L, Farago B, Nagao M (2012) Lipid bilayers and membrane dynamics: insight into thickness fluctuations. Phys Rev Lett 109:058102

    Article  CAS  PubMed  Google Scholar 

  • Wu E, Jacobson K, Papahadjopoulos D (1977) Lateral diffusion in phospholipid multibilayers measured by fluorescence recovery after photobleaching. Biochemistry 16:3936–3941

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Bittman R, Duportail G, Heissler D, Vilcheze C, London E (2001) Effect of the structure of natural sterols and Sphingolipids on the formation of ordered Sphingolipid/sterol domains (rafts): comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. J Biol Chem 276:33540–33546

    Article  CAS  PubMed  Google Scholar 

  • Yethiraj A, Weisshaar JC (2007) Why are lipid rafts not observed in vivo? Biophys J 93:3113–3119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Fischman DA, Steck TL (1973) Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Cell Biochem 1:233–248

    CAS  Google Scholar 

  • Yuan C, Furlong J, Burgos P, Johnston LJ (2002) The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes. Biophys J 82:2526–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaccai G, Blasie J, Schoenborn B (1975) Neutron diffraction studies on the location of water in lecithin bilayer model membranes. Proc Natl Acad Sci 72:376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaccai G, Büldt G, Seelig A, Seelig J (1979) Neutron diffraction studies on phosphatidylcholine model membranes: II Chain conformation and segmental disorder. J Mol Biol 134:693–706

    Article  CAS  PubMed  Google Scholar 

  • Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Wu J, Heberle FA, Mills TT, Klawitter P, Huang G, Costanza G, Feigenson GW (2007) Phase studies of model biomembranes: complex behavior of DSPC/DOPC/cholesterol. Biochim Biophys Acta Biomembr 1768:2764–2776

    Article  CAS  Google Scholar 

  • Zilman A, Granek R (1996) Undulations and dynamic structure factor of membranes. Phys Rev Lett 77:4788

    Article  CAS  PubMed  Google Scholar 

  • Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci 100:7075–7080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Katsaras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nickels, J.D., Hogg, J., Cordner, D., Katsaras, J. (2019). Lipid Rafts in Bacteria: Structure and Function. In: Goldfine, H. (eds) Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-72473-7_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72473-7_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72473-7

  • Online ISBN: 978-3-319-72473-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics