Skip to main content

Neurophysiology of Orofacial Pain

  • Reference work entry
  • First Online:
Contemporary Oral Medicine
  • 5267 Accesses

Abstract

It is well known that unmyelinated C-fibers and small-diameter Aδ-fibers innervate the orofacial skin, mucous membrane, orofacial muscles, teeth, tongue, and temporomandibular joint. Peripheral terminals consist of free nerve endings, and thermal and mechanical receptors such as transient receptor potential (TRP) channels and purinergic receptors exist in nerve endings. Ligands for each receptor are released from peripheral tissues following a variety of noxious stimuli applied to the orofacial region and bind to these receptors, following which action potentials are generated in these fibers and conveyed mainly to the trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2). Neurons receiving noxious inputs from the orofacial regions are somatotopically organized in the Vc and C1-C2. The third branch (mandibular nerve) of the trigeminal nerve innervates the dorsal portion of the Vc, and the first branch (ophthalmic nerve) of the trigeminal nerve innervates the ventral part of the Vc; the middle portion of them receives the second branch (maxillary nerve) of the trigeminal nerve. Various neurotransmitters such as glutamate and substance P (SP) are released from primary afferent terminals and bind to receptors such as AMPA and NMDA glutamate receptors and neurokinin 1 receptors in Vc and C1-C2 nociceptive neurons. Further, noxious information from the orofacial region reaching Vc and C1-C2 is sent to the somatosensory and limbic cortices via the ventral posterior medial thalamic nucleus (VPM) and medial thalamic nuclei (parafascicular nucleus, centromedial nucleus, and medial dorsal nucleus), respectively, and finally, orofacial pain sensation is perceived. It is also known that descending pathways in the brain act on Vc and C1-C2 nociceptive neurons to modulate pain signals. Under pathological conditions such as trigeminal nerve injury or orofacial inflammation, trigeminal ganglion (TG) neurons become hyperactive, and a barrage of action potentials is generated in TG neurons, and these are sensitized a long time after the hyperactivation of TG neurons. Furthermore, there is an increase in Vc and C1-C2 neuronal activities, and these neurons can be sensitized in association with TG-neuron sensitization, and then orofacial pain hypersensitivity can occur. Recent studies have also reported that glial cells are involved in pathological orofacial pain states related to trigeminal nerve injury and orofacial inflammation. Peripheral and central mechanisms of orofacial pain under physiologic and pathologic conditions are viewed in this chapter, and future insights regarding the pathogenesis of persistent orofacial pain are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama T, Curtis E, Nguyen T, Carstens MI, Carstens E. Anatomical evidence of pruriceptive trigeminothalamic and trigeminoparabrachial projection neurons in mice. J Comp Neurol. 2016;524:244–56.

    Article  PubMed  Google Scholar 

  • Al-Khater KM, Todd AJ. Collateral projections of neurons in laminae I, III, and IV of rat spinal cord to thalamus, periaqueductal gray matter, and lateral parabrachial area. J Comp Neurol. 2009;515:629–46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Asgar J, Zhang Y, Saloman JL, Wang S, Chung MK, Ro JY. The role of TRPA1 in muscle pain and mechanical hypersensitivity under inflammatory conditions in rats. Neuroscience. 2015;310:206–15.

    Article  PubMed  Google Scholar 

  • Bajic D, Proudfit HK. Projections of neurons in the periaqueductal gray to pontine and medullary catecholamine cell groups involved in the modulation of nociception. J Comp Neurol. 1999;405(3):359–79.

    Article  PubMed  Google Scholar 

  • Bakke M, Hu JW, Sessle BJ. Morphine application to peripheral tissues modulates nociceptive jaw reflex. Neuroreport. 1998;9(14):3315–9.

    Article  PubMed  Google Scholar 

  • Basbaum AI, Bautista DM, Scherrer G, Jullius D. Cellular and molecular mechanisms of pain. Cell. 2009;139:267–84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beitz AJ. The organization of afferent projections to the midbrain periaqueductal gray of the rat. Neuroscience. 1982;7:133–59.

    Article  PubMed  Google Scholar 

  • Benarroch EE. Pain-autonomic interactions: a selective review. Clin Auton Res. 2001;11:343–9.

    Article  PubMed  Google Scholar 

  • Bereiter DA, Benetti AP. Excitatory amino acid release within spinal trigeminal nucleus after mustard oil injection into the temporomandibular joint region of the rat. Pain. 1996;67:451–9.

    Article  PubMed  Google Scholar 

  • Bereiter DA, Bereiter DF. Morphine and NMDA receptor antagonism reduce c-Fos expression in spinal trigeminal nucleus produced by acute injury to the TMJ region. Pain. 2000;85:65–77.

    Article  PubMed  Google Scholar 

  • Bereiter DA, Bereiter DF, Ramos M. Vagotomy prevents morphine-induced reduction in Fos-like immunoreactivity in trigeminal spinal nucleus produced after TMJ injury in a sex-dependent manner. Pain. 2002a;96(1–2):205–13.

    Article  PubMed  Google Scholar 

  • Bereiter DA, Shen S, Benetti AP. Sex differences in amino acid release from rostral trigeminal subnucleus caudalis after acute injury to the TMJ region. Pain. 2002b;98:89–99.

    Article  PubMed  Google Scholar 

  • Bossut DF, Whitsel EA, Maixner W. A parametric analysis of the effects of cardiopulmonary vagal electrostimulation on the digastric reflex in cats. Brain Res. 1992;579(2):253–60.

    Article  PubMed  Google Scholar 

  • Brederson JD, Honda CN. Primary afferent neurons express functional delta opioid receptors in inflamed skin. Brain Res. 2015;1614:105–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brenchat A, Romero L, Garcia M, Pujol M, Burgueno J, Torrens A, et al. 5-HT7 receptor activation inhibits mechanical hypersensitivity secondary to capsaicin sensitization in mice. Pain. 2009;141(3):239–47.

    Article  PubMed  Google Scholar 

  • Burgess SE, Gardell LR, Ossipov MH, Malan Jr TP, Vanderah TW, Lai J, et al. Time-dependent descending facilitation from the rostral ventromedial medulla maintains, but does not initiate, neuropathic pain. J Neurosci. 2002;22(12):5129–36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burstein R, Yamamura H, Malick A, Strassman AM. Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brainstem trigeminal neurons. J Neurophysiol. 1998;79:964–82.

    Article  PubMed  Google Scholar 

  • Cao H, Zhang YQ. Spinal glial activation contributes to pathological pain states. Neurosci Biobehav Rev. 2008;32:972–83.

    Article  PubMed  Google Scholar 

  • Chiang CY, Hu JW, Dostrovsky JO, Sessle BJ. Change in mechanoreceptive properties of somatosensory brain stem neurons induced by stimulation of nucleus raphe magnus in cats. Brain Res. 1989;485:371–81.

    Article  PubMed  Google Scholar 

  • Chiang CY, Hu JW, Dostrovsky JO, Sessle BJ. Parabrachial area and nucleus raphe magnus-induced modulation of nociceptive trigeminal subnucleus caudalis neurons activated by cutaneous and deep inputs. J Neurophysiol. 1994;71:2430–45.

    Article  PubMed  Google Scholar 

  • Chiang CY, Hu JW, Dostrovsky JO, Sessle BJ. Central sensitization of nociceptive neruons in trigeminal subnucleus oralis depends on the integrity of subnucleus caudalis. J Neurophysiol. 2002;88:256–64.

    Article  PubMed  Google Scholar 

  • Chiang CY, Wang J, Xie YF, Zhang S, Hu JW, Dostrovsky JO, Sessle BJ. Astroglial glutamate-glutamine shuttle is involved in central sensitization of nociceptive neuron in rat medullary dorsal horn. J Neurosci. 2007;27:9068–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiang CY, Dostrovsky JO, Iwata K, Sessle BJ. Role of glia in orofacial pain. Neuroscientist. 2011;17:303–20.

    Article  PubMed  Google Scholar 

  • Choi IS, Cho JH, An CH, Jung JK, Hur YK, Choi JK, et al. 5-HT(1B) receptors inhibit glutamate release from primary afferent terminals in rat medullary dorsal horn neurons. Br J Pharmacol. 2012;167(2):356–67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung MK, Jung SJ, Oh SB. Role of TRP channels in pain sensation. Adv Exp Med Biol. 2011;704:615–36.

    Article  PubMed  Google Scholar 

  • Chung G, Jung SJ, Oh SB. Cellular and molecular mechanisms of dental nociception. J Dent Res. 2013;92(11):948–55.

    Article  PubMed  Google Scholar 

  • Darian-Smith I. The trigeminal system. In: Iggo A, editor. Handbook of sensory physiology, vol. 2, somatosensory system. Berlin: Springer; 1973. p. 271–314.

    Google Scholar 

  • Darland T, Heinricher MM, Grandy DK. Orphanin FQ/nociceptin: a role in pain and analgesia, but so much more. Trends Neurosci. 1998;21(5):215–21.

    Article  PubMed  Google Scholar 

  • Davies AJ, Kim YH, Oh SB. Painful neuron-microglia interactions in the trigeminal sensory system. Open Pain J. 2010;3:14–28.

    Google Scholar 

  • Davis KD, Stohler CS. In: Sessle BJ, editor. Orofacial pain: recent advances in assessment, management, and understanding of mechanisms. Washington, DC: IASP Press; 2014. p. 165–83.

    Google Scholar 

  • Dogrul A, Ossipov MH, Porreca F. Differential mediation of descending pain facilitation and inhibition by spinal 5HT-3 and 5HT-7 receptors. Brain Res. 2009;1280:52–9.

    Article  PubMed  Google Scholar 

  • Doly S, Fischer J, Brisorgueil MJ, Verge D, Conrath M. Pre- and postsynaptic localization of the 5-HT7 receptor in rat dorsal spinal cord: immunocytochemical evidence. J Comp Neurol. 2005;490(3):256–69.

    Article  PubMed  Google Scholar 

  • DosSantos MF, Martikainen IK, Nascimento TD, Love TM, Deboer MD, Maslowski EC, et al. Reduced basal ganglia mu-opioid receptor availability in trigeminal neuropathic pain: a pilot study. Mol Pain. 2012;8:74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubner R. Neurophysiology of pain. Dent Clin N Am. 1978;22(1):11–30.

    PubMed  Google Scholar 

  • Dubner R. The effect of behavioral state on the sensory processing of nociceptive and non-nociceptive information. Prog Brain Res. 1988;77:213–28.

    Article  PubMed  Google Scholar 

  • Dubner R, Bennett GJ. Spinal and trigeminal mechanism of nociception. Annu Rev Neurosci. 1983;6:381–418.

    Article  PubMed  Google Scholar 

  • Dubner R, Sessle BJ, Story AT. Jaw and tongue reflex. In: Dubner R, Sessle BJ, Story AT, editors. The neural basis of orofacial function. New York: Plenum; 1978. p. 246–310.

    Chapter  Google Scholar 

  • Dubner R, Iwata K, Wei F. In: Sessle BJ, editor. Orofacial pain: recent advances in assessment, management, and understanding of mechanisms. Washington, DC: IASP Press; 2014. p. 331–50.

    Google Scholar 

  • Forster M, Baron R. One failed clinical trial (of 5HT3 antagonists) does not invalidate the concept. Pain. 2012;153(2):263–4.

    Article  PubMed  Google Scholar 

  • Fried K, Sessle BJ, Devor M. The paradox of pain from tooth pulp: low-threshold “algoneurons”? Pain. 2011;152(12):2685–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garry MG, Hargreaves KM. Enhanced release of immunoreactive CGRP and substance P from spinal dorsal horn slices occurs during carrageenan inflammation. Brain Res. 1992;582:239–142.

    Article  Google Scholar 

  • Gobel S. Golgi studies of the neurons in layer II of the dorsal horn of the medulla (trigeminal nucleus caudalis). J Comp Neurol. 1978;180:395–413.

    Article  PubMed  Google Scholar 

  • Goto T, Oh SB, Takeda M, Shinoda M, Sato T, Gunjikake KK, et al. Recent advances in basic research on the trigeminal ganglion. J Physiol Sci. 2016;66:381.

    Article  PubMed  Google Scholar 

  • Greenwood LF, Sessle BJ. Input to trigeminal brainstem neurons from facial, oral, tooth and paharygolarygeal tissue: II role of trigeminal nucleus caudalis in modulating responses to innocuous and noxious stimuli. Brain Res. 1976;117:227–38.

    Article  PubMed  Google Scholar 

  • Guy N, Chalus M, Dallel R, Voisin DL. Both oral and caudal parts of the spinal trigeminal nucleus project to the somatosensory thalamus in the rat. Eur J Neurosci. 2005;21:741–54.

    Article  PubMed  Google Scholar 

  • Haley JE, Dickenson AH. Evidence for spinal N-methyl-d-aspartate receptor involvement in prolonged chemical nociception in the rat. Brain Res. 2016;518:218–26.

    Article  Google Scholar 

  • Hirata H, Okamoto K, Bereiter DA. GABAA receptor activation modulates corneal unit activity in rostral and caudal portions of trigeminal subnucleus caudalis. J Neurophysiol. 2003;90:2837–49.

    Article  PubMed  Google Scholar 

  • Holden JE, Proudfit HK. Enkephalin neurons that project to the A7 catecholamine cell group are located in nuclei that modulate nociception: ventromedial medulla. Neuroscience. 1998;83(3):929–47.

    Article  PubMed  Google Scholar 

  • Ikeda M, Tannai T, Matsushita M. Ascending and descending internuclear connections of the trigeminal sensory nuclei in the cat. A study with the retrograde and anterograde horseradish peroxidase technique. Neuroscience. 1984;12:1243–60.

    Article  PubMed  Google Scholar 

  • Ikeda T, Terayama R, Jue S, Sugiyo S, Dubner R, Ren K. Differential rostral projections of caudal brainstem neurons receiving trigeminal input after masseter inflammation. J Comp Neurol. 2003;465:220–33.

    Article  PubMed  Google Scholar 

  • Ito SI. Possible representation of somatic pain in the rat insular visceral sensory cortex: a field potential study. Neurosci Lett. 1998;241:171–4.

    Article  PubMed  Google Scholar 

  • Iwata K, Kenshalo Jr DR, Dubner R, Nahin RL. Diencephalic projections from the superficial and deep laminae of the medullary dorsal horn in the rat. J Comp Neurol. 1992;321:404–20.

    Article  PubMed  Google Scholar 

  • Iwata K, Tsuboi Y, Tashiro A, Sakamoto M, Hagiwara S, Kohno M, Sumino R. Mesencephalic projections from superficial and deep laminae of the medullary dorsal horn. J Oral Sci. 1998;40:159–63.

    Article  PubMed  Google Scholar 

  • Iwata K, Tashiro A, Tsuboi Y, Imai T, Sumino R, Morimoto T, Dubner R, Ren K. Medullary dorsal horn neuronal activity in rats with persistent temporomandibular joint and perioral inflammation. J Neurophysiol. 1999;82:1244–53.

    Article  PubMed  Google Scholar 

  • Iwata K, Imai T, Tsuboi Y, Tashiro A, Ogawa A, Morimoto T, Masuda Y, Tachibana Y, Hu J. Alteration of medullary dorsal horn neuronal activity following inferior alveolar nerve transection in rats. J Neurophysiol. 2001;86:2868–77.

    Article  PubMed  Google Scholar 

  • Iwata K, Fukuoka T, Kondo E, Tsuboi Y, Tashiro A, Noguchi K, Masuda Y, Morimoto T, Kanda K. Plastic changes in nociceptive transmission of the rat spinal cord with advancing age. J Neurophysiol. 2002;87:1086–93.

    Article  PubMed  Google Scholar 

  • Iwata K, Kamo H, Ogawa A, Tsuboi Y, Noma N, Mitsuhashi Y, Taira M, Koshikawa N, Kitagawa J. Anterior cingulate cortical neuronal activity during perception of noxious thermal stimuli in monkeys. J Neurophysiol. 2005;94:1980–91.

    Article  PubMed  Google Scholar 

  • Iwata K, Imamura Y, Honda K, Shinoda M. Physiological mechanisms of neuropathic pain: the orofacial region. Int Rev Neurobiol. 2011a;97:227–50.

    Article  PubMed  Google Scholar 

  • Iwata K, Miyachi S, Imanishi M, Tsuboi Y, Kitagawa J, Teramoto K, Hitomi S, Shinoda M, Kondo M, Takada M. Ascending multisynaptic pathways from the trigeminal ganglion to the anterior cingulate cortex. Exp Neurol. 2011b;227:69–78.

    Article  PubMed  Google Scholar 

  • Jacquin M, Chiaia NL, Haring JH, Rhoades RW. Inter subnuclear connections within the rat trigeminal brainstem complex. Somatosens Mot Res. 1986a;7:399–420.

    Article  Google Scholar 

  • Jacquin MF, Renehan WE, Mooney RD, Rhodes RW. Structure-function relationships in rat medullary and cervical dorsal horns. I. Trigeminal primary afferents. J Neurophysiol. 1986b;55:1153–86.

    Article  PubMed  Google Scholar 

  • Ji RR, Baba H, Brenner GJ, Woolf CJ. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci. 1999;2:1114–9.

    Article  PubMed  Google Scholar 

  • Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature. 2001;413(6852):203–10.

    Article  PubMed  Google Scholar 

  • Kaji K, Shinoda M, Honda K, Unno S, Shimizu N, Iwata K. Connexin 43 contributes to ectopic orofacial pain following inferior alveolar nerve injury. Mol Pain. 2016;12.

    Article  Google Scholar 

  • Katagiri A, Shinoda M, Honda K, Toyofuku A, Sessle BJ, Iwata K. Satellite glial cell P2Y12 receptor in the trigeminal ganglion is involved in lingual neuropathic pain mechanisms in rats. Mol Pain. 2012;8:23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keay KA, Feil K, Gordan BD, Herbaert H, Bandler R. Spinal afferents to functionally distinct periaqueductal gray columns in the rat: an anterograde and retrograde tracing study. J Comp Neuol. 1997;385:207–29.

    Article  Google Scholar 

  • Keller AF, Beggs S, Salter MW, De Koninck Y. Transformation of the output of spinal lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain. Mol Pain. 2007;3:27.

    Article  PubMed  PubMed Central  Google Scholar 

  • King CD, Wong F, Currie T, Mauderli AP, Fillingim RB, Riley 3rd JL. Deficiency in endogenous modulation of prolonged heat pain in patients with irritable bowel syndrome and temporomandibular disorder. Pain. 2009;143(3):172–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiyomoto M, Shinoda M, Okada-Ogawa A, Noma N, Shibuta K, Tsuboi Y, Sessle BJ, Imamura Y, Iwata K. Fractalkine signaling in microglia contributes to ectopic orofacial pain following trapezius muscle inflammation. J Neurosci. 2013;33:7667–80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koyama T, Tanaka YZ, Mikami A. Nociceptive neurons in the macaque anterior cingulate activate during anticipation of pain. Neuroreport. 1998;9:2663–7.

    Article  PubMed  Google Scholar 

  • Lau BK, Vaughan CW. Descending modulation of pain: the GABA disinhibition hypothesis of analgesia. Curr Opin Neurobiol. 2014;29:159–64.

    Article  PubMed  Google Scholar 

  • Lazarov NE. The neurochemical anatomy of trigeminal primary afferent neurons. In: Contreras CM, editor. Neuroscience – dealing with frontiers. Rijeka: Intech Europe; 2012.

    Google Scholar 

  • Malan TP, Mata HP, Porreca F. Spinal GABAA and GABAB receptor pharmacology in a rat model of neuropathic pain. Anesthesiology. 2002;96:1161–7.

    Article  PubMed  Google Scholar 

  • Mansour A, Fox CA, Akil H, Watson SJ. Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci. 1995;18(1):22–9.

    Article  PubMed  Google Scholar 

  • Manteniotis S, Lehmann R, Flegel C, Vogel F, Hofreuter A, Schreiner BS, et al. Comprehensive RNA-Seq expression analysis of sensory ganglia with a focus on ion channels and GPCRs in trigeminal ganglia. PLoS One. 2013;8(11):e79523.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mason P. Medullary circuits for nociceptive modulation. Curr Opin Neurobiol. 2012;22:640–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mickle AD, Shepherd AJ, Mohapatra DP. Sensory TRP channels: the key transducers of nociception and pain. Prog Mol Biol Transl Sci. 2015;131:73–118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Milligan ED, Watkins LR. Pathological and protective role of glia in chronic pain. Nat Rev Neurosci. 2009;10:23–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Minami M, Maekawa K, Yabuuchi K, Satoh M. Double in situ hybridization study on coexistence of mu-, delta- and kappa-opioid receptor mRNAs with preprotachykinin A mRNA in the rat dorsal root ganglia. Brain Res Mol Brain Res. 1995;30(2):203–10.

    Article  PubMed  Google Scholar 

  • Mizuno N, Konishi A, Sato M. Localization of masticatory motoneurons in the cat and rat by means of retrograde axonal transport of horseradish peroxidase. J Comp Neurol. 1975;164:105–16.

    Article  PubMed  Google Scholar 

  • Moayedi M, Weissman-Fogel I, Crawley AP, Goldberg MB, Freeman BV, Tenenbaum HC, et al. Contribution of chronic pain and neuroticism to abnormal forebrain gray matter in patients with temporomandibular disorder. NeuroImage. 2011;55(1):277–86.

    Article  PubMed  Google Scholar 

  • Mulder H, Zhang Y, Danielsen N, Sundler F. Islet amyloid polypeptide and calcitonin gene-related peptide expression are down-regulated in dorsal root ganglia upon sciatic nerve transection. Brain Res Mol Brain Res. 1997;47:322–30.

    Article  PubMed  Google Scholar 

  • Nagi K, Pineyro G. Kir3 channel signaling complexes: focus on opioid receptor signaling. Front Cell Neurosci. 2014;8:186.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakagawa K, Takeda M, Tsuboi Y, Kondo M, Kitagawa J, Matsumoto S, Kobayashi A, Sessle BJ, Shinoda M, Iwata K. Alteration of primary afferent activity following inferior alveolar nerve transection in rats. Mol Pain. 2010;6:9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakata H, Tamura Y, Sakamoto K, Akatsuka K, Hirai M, Inui K, Hoshiyama M, Saitoh Y, Yamamoto T, Katayama Y, Kakigi R. Evoked magnetic fields following noxious laser stimulation of the thigh in humans. NeuroImage. 2008;42:858–68.

    Article  PubMed  Google Scholar 

  • Nash PG, Macefield VG, Klineberg IJ, Murray GM, Henderson LA. Differential activation of the human trigeminal nuclear complex by noxious and non-noxious orofacial stimulation. Hum Brain Mapp. 2009;30(11):3772–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Noma N, Tsuboi Y, Kondo M, Matsumoto M, Sessle BJ, Kitagawa J, Saito K, Iwata K. Organization of pERK-immunoreactive cells in trigeminal spinal nucleus caudalis and upper cervical cord following capsaicin injection into oral and craniofacial regions in rats. J Comp Neurol. 2008;507:1428–40.

    Article  PubMed  Google Scholar 

  • Nomura H, Ogawa A, Tashiro A, Morimoto T, Hu JW, Iwata K. Induction of Fos protein-like immunoreactivity in the trigeminal spinal nucleus caudalis and upper cervical cord following noxious and non-noxious mechanical stimulation of the whisker pad of the rat with an inferior alveolar nerve transection. Pain. 2002;95:225–38.

    Article  PubMed  Google Scholar 

  • Okada-Ogawa A, Suzuki I, Sessle BJ, Chiang CY, Salter MW, Dostrovsky JO, Tsuboi Y, Kondo M, Kitagawa J, Kobayashi A, Noma N, Imamura Y, Iwata K. Astroglia in medullary dorsal horn (trigeminal spinal subnucleus caudalis) are involved in trigeminal neuropathic pain mechanisms. J Neurosci. 2009;29:11161–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Okada-Ogawa A, Nakaya Y, Imamura Y, Kobayashi M, Shinoda M, Kita K, Sessle BJ, Iwata K. Involvement of medullary GABAergic system in extraterritorial neuropathic pain mechanisms associated with inferior alveolar nerve transection. Exp Neurol. 2015;267:42–52.

    Article  PubMed  Google Scholar 

  • Okamoto K, Katagiri A, Rahman M, Thompson R, Bereiter DA. Inhibition of temporomandibular joint input to medullary dorsal horn neurons by 5HT3 receptor antagonist in female rats. Neuroscience. 2015;299:35–44.

    Article  PubMed  Google Scholar 

  • Okubo M, Castro A, Guo W, Zou S, Ren K, Wei F, et al. Transition to persistent orofacial pain after nerve injury involves supraspinal serotonin mechanisms. J Neurosci. 2013;33(12):5152–61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Olszewski J. On the anatomical and functional organization on the trigeminal nucleus. J Comp Neurol. 1950;92:401–13.

    Article  PubMed  Google Scholar 

  • Ossipov MH, Morimura K, Porreca F. Descending pain modulation and chronification of pain. Curr Opin Support Palliat Care. 2014;8(2):143–51.

    PubMed  PubMed Central  Google Scholar 

  • Pertovaara A. Noradrenergic pain modulation. Prog Neurobiol. 2006;80(2):53–83.

    Article  PubMed  Google Scholar 

  • Pollema-Mays SL, Centeno MV, Ashford CJ, Apkarian AV, Martina M. Expression of background potassium channels in rat DRG is cell-specific and down-regulated in a neuropathic pain model. Mol Cell Neurosci. 2013;57:1–9.

    Article  PubMed  Google Scholar 

  • Purves D, Augustine G, Fitzpatrick D, Katz L, LaMantia A-S, McNamara JD, Williams SM. Neuroscience. 2nd ed. Sunderland: Sinauer Associates Inc Publishers; 2004.

    Google Scholar 

  • Rahman W, Bauer CS, Bannister K, Vonsy JL, Dolphin AC, Dickenson AH. Descending serotonergic facilitation and the antinociceptive effects of pregabalin in a rat model of osteoarthritic pain. Mol Pain. 2009;5:45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rainville P, Carrier B, Hofbauer RK, Bushnell MC, Duncan GH. Dissociation of sensory and affective dimensions of pain using hypnotic modulation. Pain. 1999;82:159–71.

    Article  PubMed  Google Scholar 

  • Razook JC, Chandler MJ, Foremann RD. Phrenic afferent input excites C1-C2 spinal neurons in rats. Pain. 1995;63:117–25.

    Article  PubMed  Google Scholar 

  • Ren K, Dubner R. The role of trigeminal interpolaris-caudalis transition zone in persistent orofacial pain. Int Rev Neurobiol. 2011;97:207–25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiene K, Tzschentke TM, Schroder W, Christoph T. Mechanical hyperalgesia in rats with diabetic polyneuropathy is selectively inhibited by local peripheral nociceptin/orphanin FQ receptor and micro-opioid receptor agonism. Eur J Pharmacol. 2015;754:61–5.

    Article  PubMed  Google Scholar 

  • Seidel MF, Muller W. Differential pharmacotherapy for subgroups of fibromyalgia patients with specific consideration of 5-HT3 receptor antagonists. Expert Opin Pharmacother. 2011;12(9):1381–91.

    Article  PubMed  Google Scholar 

  • Sessle BJ. Neural mechanisms and pathways in craniofacial pain. Can J Neurol Sci. 1999;3:S7–11.

    Article  Google Scholar 

  • Sessle BJ. Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. Crit Rev Oral Biol Med. 2000;11:57–91.

    Article  PubMed  Google Scholar 

  • Sessle BJ. Peripheral and central mechanisms of orofacial inflammatory pain. Int Rev Neurobiol. 2011;97:179–206.

    Article  PubMed  Google Scholar 

  • Sessle BJ, Hu JW, Amano N, Zhong G. Convergence of cutaneous, tooth pulp, visceral, neck and muscle afferents onto nociceptive and non-nociceptive neurones in trigeminal subnucleus caudalis (medullary dorsal horn) and its implications for referred pain. Pain. 1986;27(2):219–35.

    Article  PubMed  Google Scholar 

  • Shibuta K, Suzuki I, Shinoda M, Tsuboi Y, Honda K, Shimizu N, Sessle BJ, Iwata K. Organization of hyperactive microglial cells in trigeminal spinal subnucleus caudalis and upper cervical spinal cord associated with orofacial neuropathic pain. Brain Res. 2012;1451:74–86.

    Article  PubMed  Google Scholar 

  • Shigenaga Y, Chen IC, Suemune S, Nishimori T, Nasution ID, Yoshida A, Sato H, Okamoto T, Sera M, Hosoi M. Oral and facial representation within the medullary and upper cervical dorsal horns in the cat. J Comp Neurol. 1986;243:388–403.

    Article  PubMed  Google Scholar 

  • Shimada SG, LaMotte RH. Behavioral differentiation between itch and pain in mouse. Pain. 2008;139(3):681–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivilotti L, Woolf CJ. The contribution of GABAA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol. 1994;15:333–41.

    Google Scholar 

  • Snider WD, McMahon SB. Tracking pain at source: new ideas about nociceptors. Neuron. 1998;20:629–32.

    Article  PubMed  Google Scholar 

  • Stein C, Zollner C. Opioids and sensory nerves. Handb Exp Pharmacol. 2009;194:495–518.

    Article  Google Scholar 

  • Sugimoto T, Takemura M. Tooth-pulp primary neurons: cell size analysis, central connection and carbonic anhydrase activity. Brain Res Bull. 1993;30:221–6.

    Article  PubMed  Google Scholar 

  • Sun WH, Chen CC. Roles of proton-sensing receptors in the transition from acute to chronic pain. J Dent Res. 2016;95(2):135–42.

    Article  PubMed  Google Scholar 

  • Suzuki R, Rygh LJ, Dickenson AH. Bad news from the brain: descending 5-HT pathways that control spinal pain processing. Trends Pharmacol Sci. 2004;25(12):613–7.

    Article  PubMed  Google Scholar 

  • Suzuki I, Tsuboi Y, Shinoda M, Shibuta K, Honda K, Katagiri A, Kiyomoto M, Sessle BJ, Matsuura S, Ohara K, Urata K, Iwata K. Involvement of ERK phosphorylation of trigeminal spinal subnucleus caudalis neurons in thermal hypersensitivity in rats with infraorbital nerve injury. PLoS One. 2013;8:e57278.

    Article  PubMed  PubMed Central  Google Scholar 

  • Takeda M, Tanimoto T, Matsumoto S. Changes in mechanical receptive field properties induced by GABAA receptor activation in the trigeminal spinal nucleus caudalis neurons in rats. Exp Brain Res. 2000;134:409–16.

    Article  PubMed  Google Scholar 

  • Takeda M, Tanimoto T, Ito M, Nasu M, Mastumoto S. Role of capsaicin-sensitive afferent inputs from the masseter muscle in the C1 spinal neurons responding to tooth-pulp stimulation in rats. Exp Brain Res. 2005;160:107–17.

    Article  PubMed  Google Scholar 

  • Tanimoto T, Takeda M, Matsumoto S. Suppressive effect of vagal afferent on cervical dorsal horn neurons responding to tooth-pulp electrical stimulation in the rat. Exp Brain Res. 2002;145:468–79.

    Article  PubMed  Google Scholar 

  • Tominaga M. The role of TRP channels in thermosensation. In: Liedtke WB, Heller S, editors. TRP ion channel function in sensory transduction and cellular signaling cascades, Frontiers in neuroscience. Boca Raton: CRC Press; 2007.

    Google Scholar 

  • Torsney C, MacDermott AB. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci. 2006;26:1833–43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Treede RD, Kenshalo DR, Gracely RH, Jones AK. The cortical representation of pain. Pain. 1999;79:105–11.

    Article  PubMed  Google Scholar 

  • Tsuboi Y, Takeda M, Tanimoto T, Ikeda M, Matsumoto S, Kitagawa J, Teramoto K, Simizu K, Yamazaki Y, Shima A, Ren K, Iwata K. Alteration of the second branch of the trigeminal nerve activity following inferior alveolar nerve transection in rats. Pain. 2004;111:323–34.

    Article  PubMed  Google Scholar 

  • Vachon-Presseau E, Centeno MV, Ren W, Berger SE, Tetreault P, Ghantous M, Baria A, Farmer M, Baliki MN, Schnitzer TJ, Apkarian AV. The emotional brain as a predictor and amplifier of chronic pain. J Dent Res. 2016;95:605–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogt BA. Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci. 2005;6:533–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Waite, Tracy. In: Paxinos G, editor. The rat nervous system. 2nd ed. Sydney: Academic; 1995. p. 705–24.

    Google Scholar 

  • Wei F, Dubner R, Zou S, Ren K, Bai G, Wei D, et al. Molecular depletion of descending serotonin unmasks its novel facilitatory role in the development of persistent pain. J Neurosci. 2010;30(25):8624–36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Willis Jr WD. Central nervous system mechanisms for pain modulation. Appl Neurophysiol. 1985;48(1–6):153–65.

    Google Scholar 

  • Willis WD. Role of neurotransmitters in sensitization of pain responses. Ann N Y Acad Sci. 2001;933:142–56.

    Article  PubMed  Google Scholar 

  • Willis Jr WD, Zhang X, Honda CN, Giesler Jr GJ. Projections from the marginal zone and deep dorsal horn to the ventrobasal nuclei of the primate thalamus. Pain. 2001;92:267–76.

    Article  PubMed  Google Scholar 

  • Woo SH, Ranade S, Weyer AD, Dubin AE, Baba Y, Qiu Z, Petrus M, Miyamoto T, Reddy K, Lumpkin EA, Stucky CL, Patapoutian A. Piezo2 is required for Merkel-cell mechanotransduction. Nature. 2014;509:622–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yaksh TL, Rudy TA. Narcotic analgestics: CNS sites and mechanisms of action as revealed by intracerebral injection techniques. Pain. 1978;4(4):299–359.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Iwata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Iwata, K., Takeda, M., Oh, S.B., Shinoda, M. (2019). Neurophysiology of Orofacial Pain. In: Farah, C., Balasubramaniam, R., McCullough, M. (eds) Contemporary Oral Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-72303-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72303-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72301-3

  • Online ISBN: 978-3-319-72303-7

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics