Skip to main content

Technical Description of Static Var Compensators (SVC)

  • Living reference work entry
  • Latest version View entry history
  • First Online:
  • 246 Accesses

Part of the book series: CIGRE Green Books ((CIGREGB))

Abstract

This chapter provides a technical description of the Static Var Compensators (SVC) used in electrical power systems. It highlights the technological evolution from the 1980s, when the first SVCs were installed in Brazil, until the later SVCs installed in Brazil. Aspects of the control systems used in the two groups of SVCs are described, highlighting the advantages of the use of adaptive control systems in the later generation SVCs. The chapter also describes an innovative solution that uses a series reactor to reduce the harmonic filtering requirements and to avoid resonances with the power grid. This equipment is in operation in Brazilian Electric Power Grid since December 2016. The chapter also provides details of a control scheme used to coordinate the operation of two SVCs installed electrically close in the Brazilian Electric Power Grid.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    αc is the TCR firing angle that produces TCR admittance equal in magnitude to the TSC value (B [TCR (αc)] = B(TSC).

  2. 2.

    Note that in the IEEE standard C57.110 for regular power transformers, the eddy current and stray losses are given the same weight.

  3. 3.

    See, for example, data sheet for a device 5STP 42 U6500. https://library.e.abb.com/public/c92a9062c3392b1f83257c63004dbb1d/5STP%2042U6500_5SYA1043-07%20Mar%2014.pdf, accessed November 11, 2018.

References

  • Aho, J., Thomson, N., Kähkönen, A., Kaasalainen, K.: Main reactor concept – a cost and performance efficient SVC configuration. The 16th European Conference on Power Electronics Application – EPE’14 ECCE Europe Procedures, Lappeenranta, 26–28 Aug 2014

    Google Scholar 

  • Aho, J., Kuusinen, S., Nissinen, T., Kahkonen, A., Spinella, M., Campos, R., Lima, M., Salvador, H.: Blocking Reactor as Part of SVC System – A Novel Concept for Harmonics Reduction and Lowered Operational Losses, Cigré Paper B4–202, 46a. Cigré Session, Paris, 19–27 Aug 2016

    Google Scholar 

  • Belanger, J., Scott, G., Anderson, T., Torseng, S.: Gain Supervision for Thyristor Controlled Shunt Compensators, CIGRÉ, Paper No. 38-01, Sept 1984

    Google Scholar 

  • Cao, J.Z., Donogue, M., Horwill, C., Singh, A.: TCR and thyristor valves for Rowville SVC replacement project. In: 2010 International Conference on Power System Technology (POWERCON 2010), Hangzhow, Oct 2010

    Google Scholar 

  • Cigré TB 25: Working Group 38–01, Task Force No. 2 on SVC, “Static Var Compensator”, p. 125, 1968

    Google Scholar 

  • CIGRE TB 529: Guidelines for Conducting Design Reviews for Power Transformers, Apr 2013

    Google Scholar 

  • CIGRE TB 659: Transformer Thermal Modelling, June 2016

    Google Scholar 

  • CIGRÉ Technical Brochure 25, Static var compensators, 1986

    Google Scholar 

  • Cigré TB 78: Task Force 01.02 “Valves for SVC” of Study Committee 14 “Voltage and Current Stresses on Thyristor Valves for Static VAR Compensators”, Oct 1993

    Google Scholar 

  • Clarke, E.: Circuit Analysis of AC Power Systems, vol. I. Wiley, New York (1943)

    Google Scholar 

  • DNP Users Group.: https://www.dnp.org/AboutUs/DNP3%20Primer%20Rev%20A.pdf. Accessed 2 Nov 2018

  • Fitzgerald, A., Kingsley, C., Umans, S.: Electric Machinery, Sixty Edition. McGraw-Hill Higher Education, New York. ISBN 0-07-366009-4 – 0-07-112193-5 (2003)

    Google Scholar 

  • Grainger, W., Waite, G., Bolden, R., Gawler, R., Stewart, J., Craven, R.: Analytical Techniques for the Application of Static Var Compensators to Improve the Capability of Long Distance Transmission Systems to Remote Areas of Australia, 1986 Cigré Session, Paper 38–04

    Google Scholar 

  • Gutman, R., Keane, J.J., Rahman, M.E., Veraas, O.: Application and operation of a static var system on a power system – American electric power experience, Part I: system studies. IEEE PES, Summer meeting, paper No. 84 SM 634-2, 1984 also IEEE, PAS, vol. PAS-104, No. 7, pp. 1868–1874, June 1985

    Google Scholar 

  • Heathcote, M.J.: The J&P Transformer Book, 13th edn, pp. 812–821. Elsevier, Oxford (2007)

    Google Scholar 

  • Hingorani, N., Gyugyi, L.: Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems. IEEE Press, New York. ISBN 0-7803-3455-8 (2000)

    Google Scholar 

  • IEC 60076-57-129 Power transformers–Part 57-129: Transformers for HVDC applications (2017)

    Google Scholar 

  • IEEE Standard 1158–1991, Power Losses in HVDC Converter Stations

    Google Scholar 

  • IEEE Standard 1031: IEEE Guide for the Functional Specification of Transmission Static Var Compensators (2011)

    Google Scholar 

  • IEEE Standard C57.110: Recommended Practice for Establishing Transformer Capability when Supplying Nonsinusoidal Load Currents (1998)

    Google Scholar 

  • IEEE Standard C57.18.10: Practices and Requirements for Semiconductor Power Rectifier Transformers (1998)

    Google Scholar 

  • IEEE C57.12.00-2015, IEEE Standard For General Requirements For Liquid-Immersed Distribution, Power, And Regulating Transformers (2015)

    Google Scholar 

  • IEEE C57.12, 90-2015, IEEE Standard Test Code For Liquid-Immersed Distribution, Power, And Regulating Transformers (2015)

    Google Scholar 

  • Katoh, S., Yamazumi, S., Watanabe, A., Amemiya, K.: Overvoltage self-protection structure of a light-triggered thyristor. IEEE Trans. Electron Devices. 48(4), 789–793 (2001)

    Article  Google Scholar 

  • Krishnayya, P.C.S.: Important Characteristics of Thyristors of Valves of HVDC Transmission and Static Var Compensators, 1984 Cigé Session, Paper 14–10

    Google Scholar 

  • Lajoie, E.G., Scott, G., Breault, S., Larsen, E.V., Baker, D.H., Imece, A.F.: Hydro-Quebec multiple SVC application control stability study. IEEE Trans. Power Deliv. 5(3), 1533–1550 (1990)

    Google Scholar 

  • Lawatsch, H.M., Vitins, J.: Protection of thyristors against overvoltage with breakover diodes. IEEE Trans. Ind. Appl. 24(3), 444–448 (1988)

    Article  Google Scholar 

  • Lima, M.: A Thirty Years Technological Evolution Panel of Static VAr Compensation Application in a Brazilian Transmission Utility, Cigré Paper B4–12, HVDC and Power Electronics to Boost Network Performance Colloquium, Study Committee B4, Brasilia, 2–3 Oct 2013

    Google Scholar 

  • Lima, M., Eliasson, P.E., Brisby, C.: Considerations regarding electrically close static var compensators with adaptive controllers joint operation and performance. In: XIII Symposium of Specialists in Electric Operational and Expansion Planning (SEPOPE), Foz do Iguaçu, 18–21 May 2014, SP077

    Google Scholar 

  • Lima, M., Patricia Feingold, P., John Schwartzenberg, J.: Dynamic Performance Evaluation of Static VAr Compensators with Adaptive Control and Operating Electrically Close in Real Time Digital Simulator, Cigré Paper B4–117, Cigré Winnipeg 2017 Colloquium, Study Committees A3, B4 and D1, Winnipeg, 30 Sept–6 Oct 2017

    Google Scholar 

  • Lindström, C.O., Walve, K., Waglund, G.: The 200 Mvar Static Compensator in Hagby, 1984 Gigré Session, Paper 38-02

    Google Scholar 

  • Miller, T.J.E.: Reactive Power Control in Electric Systems. Wiley, New York. ISBN 0-471-86933-3 (1982)

    Google Scholar 

  • Mohan, N., Undeland, T., Robbins, W.: Power Electronics: Converters, Applications and Design, 2nd edn. Wiley, New York. ISBN 0-471-58408-8 (1995)

    Google Scholar 

  • Padyar, K.R.: FACTS Controllers in Power Transmission and Distribution. New Age International Publishers, New Delhi. ISBN 978-81-224-2541-3 (2007)

    Google Scholar 

  • Park, R.H.: Two reaction theory of synchronous machines. AIEE Trans. 48, 716–730 (1929)

    Google Scholar 

  • Pilz, G., Langner, D., Battermann, M., Schmitt, H.: Line – or Self Commutated Static VAr Compensators (SVc) – Comparison and Application with Respect to Changed System Conditions, Cigré Paper B4–03, HVDC and Power Electronics to Boost Network Performance Colloquium, Study Committee B4, Brasilia, 2–3 Oct 2013

    Google Scholar 

  • Ruff, M., Schulze, H.J., Kellner, U.: Progress in the development of an 8-kV light-triggered thyristor with integrated protection functions. IEEE Electronic Devices (ED). 46(8), 1768–1774 (1999)

    Article  Google Scholar 

  • Schultz, H.J., Ruff, M., Baur, B.: Light triggered 8 kV thyristor with a new integrated breakover diode. In: Proceedings from ISPSD, pp. 197–200 (1996)

    Google Scholar 

  • Temple, V.A.K.: Controlled turn-on thyristor. IEEE Trans. Electron Devices. ED-30, 816–824 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfredo Lima .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG 2019

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lima, M., Nilsson, S. (2020). Technical Description of Static Var Compensators (SVC). In: Flexible AC Transmission Systems . CIGRE Green Books. Springer, Cham. https://doi.org/10.1007/978-3-319-71926-9_7-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71926-9_7-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71926-9

  • Online ISBN: 978-3-319-71926-9

  • eBook Packages: Springer Reference EnergyReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Technical Description of Static Var Compensators (SVC)
    Published:
    30 November 2019

    DOI: https://doi.org/10.1007/978-3-319-71926-9_7-2

  2. Original

    Technical Description of Static Var Compensators (SVC)
    Published:
    05 June 2019

    DOI: https://doi.org/10.1007/978-3-319-71926-9_7-1