Skip to main content

Paramagnetic and Superparamagnetic Silicon Nanocomposites

  • Reference work entry
  • First Online:
Handbook of Porous Silicon

Abstract

Superparamagnetic nanostructures are of interest for applications such as high-density data storage and biomedical theranostics. In this updated review, the paramagnetic properties of nanostructured silicon are outlined and progress with tuning the magnetic properties of nanocomposites consisting of mesoporous silicon, and infiltrated superparamagnetic iron oxide nanoparticles are discussed. The magnetic behavior of the system depends on the nanoparticle size as well as on the magnetic coupling between them. Both influence the so-called blocking temperature; the transition between superparamagnetic behavior and blocked state. A particle size-related assessment shows that the blocking temperature increases with increasing particle size if the distances between the particles are equal. The blocking temperature can be decreased by weakening the magnetic interaction between the particles. Special attention is paid to iron oxide nanoparticles which are of interest due to their monodispersity and strong magnetic behavior but also because of the biocompatibility of porous silicon-iron oxide nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anglin EJ, Cheng L, Freeman WR, Sailor MJ (2008) Porous silicon in drug delivery devices and materials. Adv Drug Deliv Rev 60:1266

    Article  CAS  Google Scholar 

  • Antropov IM, Semisalova AS, Konstantinova EA, Perov NS, Kozlov SN (2012) Effect of parabenzoquinone adsorption on the magnetic properties of nanostructured silicon. Semiconductors 46:1119

    Article  CAS  Google Scholar 

  • Balakrishnan S, Gun’ko YK, Perova TS, Moore RA, Venkatesan M, Douvalis AP, Brouke P (2006) Dendrite-like self-assembly of magnetite nanoparticles on porous silicon. Small 2:864

    Article  CAS  Google Scholar 

  • Bardeleben HJ, Cantin JL (1997) Paramagnetic defects in porous silicon. In: Canham LT (ed) Properties of porous silicon. INSPEC, London

    Google Scholar 

  • Bertotti G (1998) Hysteresis in magnetism. Academic, Cambridge

    Google Scholar 

  • Canham LT (1995) Bioactive silicon structure fabrication through nanoetching techniques. Adv Mater 7:1033

    Article  CAS  Google Scholar 

  • Cantin JL, Schoisswohl M, von Bardeleben H-J, Hadj Zoubir N, Vergnat M (1995) Electron-paramagnetic-resonance study of the microscopic structure of the Si(001)-SiO2 interface. Phys Rev B 52:R11599

    Article  CAS  Google Scholar 

  • Cantin JL, Schoisswohl M, von Bardeleben H-J (1997) Chapter 14. In: Amato G, Delerue C, von Bardeleben H-J (eds) Structural and optical properties of porous silicon nanostructures. Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  • Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532

    Article  CAS  Google Scholar 

  • Ghoshal S, Ansar AAM, Raja SO, Jana A, Bandyopadhyay NR, Dasgupta AK, Ray M (2011) Superparamagnetic iron oxide nanoparticle attachment on array of micro test tubes and microbeakers formed on p-type silicon substrate for biosensor application. Nanoscale Res Lett 6:540

    Article  CAS  Google Scholar 

  • Gongalski MB, Kargina YuV, Osminkina LA, Perepuhov AM, Gulyaev MV, Vasiliev AN, Pirogov YuA, Maximychev AV, Timoshenko VYu (2015) Porous silicon nanoparticles as biocompatible contrast agents for magnetic resonance imaging. Appl PhysLett 107:233702

    Google Scholar 

  • Goya GF, Morales MP (2004) Field dependence of blocking temperature in magnetite nanoparticles. J Metastab Nanocryst Mater 20:673

    Google Scholar 

  • Granitzer P, Rumpf K (2011) Magnetic nanoparticles embedded in a silicon matrix. Materials 4:908

    Article  Google Scholar 

  • Granitzer P, Rumpf K, Venkatesan M, Roca AG, Cabrera L, Morales MP, Poelt P, Albu M (2010a) Magnetic study of Fe3O4 nanoparticles incorporated within mesoporous silicon. J Electrochem Soc 157:K145

    Article  CAS  Google Scholar 

  • Granitzer P, Rumpf K, Venkatesan M, Roca AG, Cabrera L, Morales MP, Poelt P, Albu M (2010b) Magnetic study of Fe3O4 nanoparticles incorporated within mesoporous silicon. J Electrochem Soc 157:K145

    Article  CAS  Google Scholar 

  • Granitzer P, Rumpf K, Venkatesan M, Cabrera L, Roca AG, Morales MP, Poelt P, Albu M, Ali K, Reissner M (2011) Magnetic behaviour of a magnetite/silicon nanocomposite. J Nanopart Res 13:5685

    Article  CAS  Google Scholar 

  • Granitzer P, Rumpf K, Tian Y, Akkaraju G, Coffer JL, Poelt P, Reissner M (2013) Size-dependent assessment of Fe3O4-nanoparticles loaded into porous silicon optical. ECS Trans 50:77

    Article  CAS  Google Scholar 

  • Granitzer P, Rumpf K, Coffer J, Poelt P (2015) Assessment of magnetic properties of nanostructured silicon loaded with superparamagnetic iron oxide nanoparticles. ECS J Solid State Sci Technol 4(5):N44–N46

    Article  CAS  Google Scholar 

  • Gu L, Park J-H, Duong KH, Ruoslahti E, Sailor MJ (2010) Magnetic luminescent porous silicon microparticles for localized delivery of molecular drug payloads. Small 22:2546

    Article  CAS  Google Scholar 

  • Gubin SP (ed) (2009) Magnetic nanoparticles. Wiley-VCH, Weinheim

    Google Scholar 

  • Joo SH, Park JY, Tsung CK, Yamada Y, Yang P, Somorjai GA (2009) Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat Mater 8:126

    Article  CAS  Google Scholar 

  • Kinsella J, Ananda S, Andrew J, Grondek J, Chien M-P, Scandeng M, Gianneschi N, Ruoslahti E, Sailor M (2013) Enhanced magnetic resonance contrast of iron oxide anoparticles embedded in a porous silicon nanoparticle host. Proc SPIE 8594

    Google Scholar 

  • Ko PJ, Ishikawa R, Takamura T, Sohn H, Sandhu A (2012) Porous silicon based protocol for the rapid and real-time monitoring of biorecognition between human IgG and protein A using functionalized superparamagnetic beads. IEEE Trans Magn 48:2846

    Article  CAS  Google Scholar 

  • Lee J, Lee Y, Youn JK, Na HB, Yu T, Kim H, Lee S-M, Koo Y-M, Kwak JH, Park HG, Chang HN, Hwang M, Park J-G, Kim J, Hyeon T (2008) Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. Small 4:143

    Article  CAS  Google Scholar 

  • Lee J-H, Jang J-T, Choi J-S, Moon S-H, Noh S-H, Kim J-W, Kim J-G, Kim I-S, Park K-I, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6:418

    Article  CAS  Google Scholar 

  • Lehmann V (2002) Electrochemistry of silicon, instrumentation, science, materials and applications. Wiley-VCH, Weinheim

    Google Scholar 

  • Lukatskaya MR, Vyacheslavov AS, Lukashin AV, Tretyakov YD, Zhigalina OM, Eliseev AA (2009) Cobalt-containing nanocomposites based on zeolites of MFI framework type. J Magn Magn Mater 321:3866

    Article  CAS  Google Scholar 

  • Lundquist CM, Loo C, Meraz IM, De La Cerda J, Liu X, Serda RE (2014) Characterization of free and porous silicon encapsulated superparamagnetic iron oxide nanoparticles as platforms for the development of theranostic vaccines. Med Sci 2:51–69

    CAS  Google Scholar 

  • Munoz Noval A, Sanchez-Vaquero V, Torres Costa V, Gallach D, Ferro-Llamos V, Serrano JJ, Manso-Silvan M, Garcia-Ruiz JP, del Pozo F, Martin Palma RJ (2011) Hybrid luminescent/magnetic nanostructured porous silicon particles for biomedical applications. J Biomed Opt 16:025002

    Article  CAS  Google Scholar 

  • Munoz Noval A, Garcia R, Ruiz Casas D, Losada Bayo D, Sanchez Vaquero V, Torres Costa V, Martin Palma RJ, Garcia MA, Garcia Ruiz JP, Serrano Olmedo JJ, Munoz Negrete JF, del Pozo Guerrero F, Manso Silvan M (2013) Design and characterization of biofunctional magnetic porous silicon flakes. Acta Biomater 9:6169

    Article  CAS  Google Scholar 

  • Munoz-Bonilla A, Marcelo G, Casado C, Teran FJ, Fernandez-Garcia M (2012) Preparation of glycopolymer-coated magnetite nanoparticles for hyperthermia treatment. J Polym Sci A Polym Chem 50:5087

    Article  CAS  Google Scholar 

  • Nakamura T, Adachi S (2012) Properties of magnetic nickel/porous silicon composite powders. AIP Adv 2:32167

    Article  CAS  Google Scholar 

  • Pointdexter EH, Caplan PJ, Deal BE, Razouk R (1981) Interface states and electron spin resonance centers in thermally oxidized (111) and (100) silicon wafers. J Appl Phys 52:879

    Article  Google Scholar 

  • Roca AG, Costo R, Rebolledo AF, Veintemillas-Verdaguer S, Tartaj P, Gonzalez-Carreno T, Morales MP, Serna CJ (2009) Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 42:224002

    Article  CAS  Google Scholar 

  • Rumpf K, Granitzer P, Poelt P, Reissner M (2013) Specific loading of porous silicon with iron oxide nanoparticles to achieve different blocking temperatures. Thin Solid Films 543:56

    Article  CAS  Google Scholar 

  • Serda RE, Mack A, Pulikkathara M, Zaske AM, Chiappini C, Fakhoury JR, Webb D, Godin B, Conyers JL, Liu XW, Bankson JA, Ferrari M (2010) Cellular association and assembly of multistage delivery system. Small 6:1329–1340

    Article  CAS  Google Scholar 

  • Shukla N, Nigra MM, Nuhfer T, Bartel MA, Gellman AJ (2009) Tailoring the shapes of Fe(x)Pt(100-x) nanoparticles. Nanotechnology 20:065602

    Article  CAS  Google Scholar 

  • Skomsky R, Coey JMD (1993) Giant energy product in nanostructured two-phase magnets. Phys Rev Lett 48:15812

    Google Scholar 

  • Suzuki K (1999) Nanocrystalline soft magnetic materials: a decade of alloy development. Mater Sci Forum 312–314:521

    Article  Google Scholar 

  • Thomas JC, Pacholski C, Sailor MJ (2006) Delivery of nanogram payloads using magnetic porous silicon microcarriers. Royal Soc Chem 6:782

    CAS  Google Scholar 

  • von Bardeleben H-J, Cantin JL, Ke L, Shishkin Y, Devaty RP, Choyke WJ (2005) Interface defects in n-type 3C-SiC/SiO2: an EPR study of oxidized porous silicon carbide single crystals. Mater Sci Forum 483–485:273

    Article  Google Scholar 

  • Wei X, Skomski R, Balamurugan B, Sellmyer D (2010) Magnetism of core-shell Ti:TiO nanoparticles. J Appl Phys 107:09B516

    Article  Google Scholar 

  • Witten TA, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47:1400

    Article  CAS  Google Scholar 

  • Yallapu MM, Othman SF, Curtis ET, Gupta BK, Jaggi M, Chauhan SC (2011) Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials 32:1890

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klemens Rumpf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rumpf, K., Granitzer, P. (2018). Paramagnetic and Superparamagnetic Silicon Nanocomposites. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-71381-6_31

Download citation

Publish with us

Policies and ethics