Skip to main content

Tunable Properties of Porous Silicon

  • Reference work entry
  • First Online:
Handbook of Porous Silicon

Abstract

Data and literature are collated that emphasize the high tunability of porous silicon properties, either via manipulation of its structural parameters, via the chemistry of the large internal surface area, or via impregnation of other materials. An updated and expanded overview of quantitative data on more than 35 properties is tabulated and compared to those of nonporous silicon. Where available, the range of values reported to date is given. The properties showing the widest tunability to date include the visible light absorption and photoluminescence (optical bandgap), mechanical stiffness, thermal conductivity, optical refractive index, electrical resistivity, biodegradability kinetics, optical reflectivity, combustion propagation velocity, and surface wettability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham A, Piekiel NW, Morris CJ, Dreizin EL (2016) Combustion of energetic porous silicon composites containing different oxidizers. Propell Explos Pyrotech 41:179–188

    Article  CAS  Google Scholar 

  • Agarwal V, del Rio JA (2003) Tailoring the photonic bandgap of a porous silicon dielectric mirror. Appl Phys Lett 82:1512–1514

    Article  CAS  Google Scholar 

  • Aliev GN, Goller B, Snow PA (2011) Elastic properties of porous silicon studied by acoustic transmission spectroscopy. J Appl Phys 110:043534

    Article  CAS  Google Scholar 

  • Behren J v, Fauchet PM (1997) Absorption coefficient of porous silicon. In: Canham LT (ed) Properties of porous silicon. IEE Press, London, pp 229–233

    Google Scholar 

  • Bittner RW, Bica K, Hoffmann H (2017) Fluorine-free, liquid repellant surfaces made from ionic liquid infused nanostructured silicon. Monash Chem 148:167–177

    Article  CAS  Google Scholar 

  • Bonanno LM, Deloiuse LA (2010) Tunable detection sensitivity of opiates in urine via a label free porous silicon competitive inhibition immunosensor. Anal Chem 82(2):714

    Article  CAS  Google Scholar 

  • Canham LT (1997) Properties of porous silicon, EMIS datareview series, vol 18. IEE Press, London

    Google Scholar 

  • Cao M, Song X, Zhai J, Wang J, Wang Y (2006) Fabrication of highly antireflective silicon surfaces with superhydrophobicity. J Phys Chem B 110(6):13072–13075

    Article  CAS  Google Scholar 

  • Chan MH, So SK, Cheah KW (1996) Optical absorption of free standing porous silicon films. J Appl Phys 79(6):3273–3275

    Article  CAS  Google Scholar 

  • Choi J, W ang NS, Reipa V (2007) Photoassisted tuning of silicon nanocrystal photoluminescence. Langmuir 23:3388–3394

    Article  CAS  Google Scholar 

  • Choi J, Zhang Q, Reipa V, Wang NS, Stratmeyer ME, Hitchins VM, Goering PL (2008) Comparison of cytotoxic and inflammatory responses of photoluminescent silicon nanoparticles with silicon micron-sized particles in RAW 264.7 macrophages. J Appl Toxicol 29:52–60

    Article  CAS  Google Scholar 

  • Di Francia G, Quercia L, Rea I, Maddalena P, Lettieri S (2005) Nanostructure reactivity: confinement energy and charge transfer in porous silicon. Sensors Actuators B111–112:117–124

    Article  CAS  Google Scholar 

  • Fritzsche H (1989) Properties of amorphous silicon, EMIS datareview series, vol 1, 2nd edn. IEE Press, London

    Google Scholar 

  • Garin M, Trifonov T, Rodriguez A, Alcubilla R, Marquier F, Arnold C, Greffet JJ (2008) Improving selective thermal emission properties of three dimensional macroporous silicon through porosity tuning. Appl Phys Lett 93:081913

    Article  CAS  Google Scholar 

  • Godin B, Gu J, Serda RE, Bhavane R, Tasciotti E, Chiappini C, Liu X, Tanaka T, Decuzzi P, Ferrari M (2010) Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation. J Biomed Mater Res A 94(4):1236–1243

    Google Scholar 

  • Granitzer P, Rumpf K (2010) Porous silicon – a versatile host material. Materials 3:943–998

    Article  CAS  Google Scholar 

  • Hermansson K, Lindberg U, Hok B, Palmskog G (1991) Wetting properties of silicon surfaces. In: IEEE proceedings of the international conference transducers 24–27 June 1991, San Francisco, pp 193–196

    Google Scholar 

  • Herynkova K, Slechta M, Simakova P, Fucikova A, Cibulka O (2016) Agglomeration of luminescent porous silicon nanoparticles in colloidal solutions. Nano Res Lett 11:367

    Article  CAS  Google Scholar 

  • Hofmann T, Wallacher D, Toft-Peterson R, Ryall B, Reehuis M, Habicht K (2017) Phonons in mesoporous silicon: the influence of nanostructuring on the dispersion in the Debye regime. Micro Meso Mater 243:263–270

    Article  CAS  Google Scholar 

  • Hou H, Nieto A, Ma F, Freeman WR, Sailor MJ, Cheng L (2014) Tunable sustained intravitreal drug delivery system for daunorubicin using oxidized porous silicon. J Control Release 178:46–54

    Article  CAS  Google Scholar 

  • Hull R (1999) Properties of crystalline silicon, EMIS datareview series, vol 20. IEE Press, London

    Google Scholar 

  • Ilyas S, Gal M (2006) Gradient refractive index planar microlens in Si using porous silicon. Appl Phys Lett 89:211123

    Article  CAS  Google Scholar 

  • Jiang L, Li S, Wang J, Yang L, Sun Q, Li Z (2014) Surface wettability of oxygen plasma treated porous silicon. J Nanomater 2014(4.): 526149):1–6

    Google Scholar 

  • Joo J, Defforge T, Loni A, Kim D, Li ZY, Sailor MJ, Gautier G, Canham LT (2016) Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying. Appl Phys Lett 108(15):153111. https://doi.org/10.1063/1.4947084

    Article  CAS  Google Scholar 

  • Kaasalainen M, Makila E, Riikonen J, Kovalainen M, Jarvinen K, Herzig KH, Lehto VP, Salonen J (2012) Effect of isotonic solutions and peptide adsorption on zeta potential of porous silicon nanoparticle drug delivery formulations. Int J Pharm 431:230–236

    Article  CAS  Google Scholar 

  • Korhonen E, Ronkko S, Hillebrand S, Riikonen J, Xu W, Jarvinen K, Lehto VP, Kaupinnen A (2016) Cytotoxicity assessment of porous silicon microparticles for ocular drug delivery. Eur J Pharm Biopharm 100:1–8

    Article  CAS  Google Scholar 

  • Kovalev D, Polisski G, Ben-Chorin M, Diener J, Koch F (1996) The temperature dependence of the absorption coefficient of porous silicon. J Appl Phys 80(10):59878–55983

    Article  Google Scholar 

  • Kumar P, Hofmann T, Huber P, Scheib P, Lemmens P (2008) Tuning the pore wall morphology of mesoporous silicon from branchy to smooth tubular by chemical treatment. J Appl Phys 103:024303

    Article  CAS  Google Scholar 

  • Labbe-Lavigne S, Barret S, Garet F, Duvillaret L, Coutaz JL (1998) Far infrared dielectric constant of porous silicon layers measured by terahertz time-domain spectroscopy. J Appl Phys 83(11):6007–6010

    Article  CAS  Google Scholar 

  • Lammel G, Schwiezer S, Schiesser S, Renaud P (2002) Tunable optical filter of porous silicon as a key component for a MEMS spectrometer. J Microelectromech Syst 11(6):815–828

    Article  CAS  Google Scholar 

  • Liu YH, Wang XK, Luo JB, XC L (2009) Fabrication and tribological properties of super-hydrophobic surfaces based on porous silicon. Appl Surf Sci 255:9430–9438

    Article  CAS  Google Scholar 

  • Loni A, Canham LT, Defforge T, Gautier G (2015) Supercritically dried porous silicon powders with surface areas exceeding 1000m2/g. ECS J Solid State Sci Techn 4(8):289–292

    Article  CAS  Google Scholar 

  • Makila E, Bimbo LM, Kaasalainen M, Herranz B, Airaksinen AJ, Heinonen M, Kukk E, Hirvonen J, Santos HA, Salonen J (2012) Amine modification of thermally carbonized porous silicon with silane coupling chemistry. Langmuir 28(39):14045–14054

    Article  CAS  Google Scholar 

  • Martin-Palma RJ, Pascual L, Herrero P, Martinez-Duart JM (2002) Direct determination of grain sizes, lattice parameters and mismatch of porous silicon. Appl Phys Lett 81(1):25–27

    Article  CAS  Google Scholar 

  • Murzina TV, Scyhev FY, Kolymchek IA, Aktsipetrov OA (2007) Tunable ferroelectric photonic crystals based on porous silicon templates infiltrated by sodium nitrite. Appl Phys Lett 90:161120

    Article  CAS  Google Scholar 

  • Ocier CR, Krueger NA, Zhou W, Braun PV (2017) Tunable visibly transparent optics derived from porous silicon. ACS Photonics 4:909–914

    Article  CAS  Google Scholar 

  • Osminkina LA, Luckyanova EN, Gongalsky MB, Kudryatsev AA, Gaydarova AK, Poltavtseva RA, Kashkarov PK, Timoshenko VY, Sukhikh GT (2011) Effects of nanostructurized silicon on proliferation of stem and cancer cell. Bull Expt Biology Medicine 151(1):79–83

    Article  CAS  Google Scholar 

  • Perez KS, Estevez OJ, Mendez-Blas A, Arriaga J, Palestino G, Mora-Ramos E (2012) Tunable resonance transmission modes in hybrid heterostructures based on porous silicon. Nanoscale Res Lett 7:392

    Article  Google Scholar 

  • Piekiel NW, Morris CJ, Churaman WA, Cunningham ME, Lunking DM, Currano LJ (2015) Combustion and material characterization of highly tunable on-chip energetic porous silicon. Propell Explos Pyrotech 40:16–26

    Article  CAS  Google Scholar 

  • Plummer A, Kuznetsov V, Joyner T, Shapter J, Voelcker NH (2011) The burning rate of energetic films of nanostructured porous silicon. Small 7(23):3392–3398

    Article  CAS  Google Scholar 

  • Plummer A, Kuznetsov AV, Gascooke J, Shapter J, Voelcker NH (2016) Sensitiveness of porous silicon-based nano-energetic films. Propell Explos Pyrotech 41:1029–1035

    Article  CAS  Google Scholar 

  • Rajikumar K, Rajavel K, Cameron DC, Rajendra Kumar RT (2017) Controlled fabrication and electrowetting properties of silicon nanostructures. J Adhes Sci Techn 31(1):31–40

    Article  CAS  Google Scholar 

  • Ramachandra Rao R, Roopa HN, Kannan TS (1999) The characterisation of aqueous silicon slips. J Eur Ceram Soc 19:2763–2771

    Article  Google Scholar 

  • Ressine A, Finnskog D, Marko-Varga G, Laurell T (2008) Superhydrophobic properties of nanostructured-microstructured porous silicon for improved surface-based bioanalysis. NanoBiotechnology 4:18–27

    Article  CAS  Google Scholar 

  • Santos HA, Riikonen J, Salonen J, Makila E, Heikkila T, Laaksonen T, Peltonen L, Lehto VP, Hirvonen J (2010) In vitro cytotoxicity of porous silicon microparticles: effect of the particle concentration, surface chemistry and size. Acta Biomater 6:2721–2731

    Article  CAS  Google Scholar 

  • Shahbazi MA, Fernandez TD, Makila EM, Guevel XL, Mayorga C, Kaasalainen MH, Salonen J, Hirvonen JT, Santos HA (2014) Surface chemistry depenedent immunostimulative potential of porous silicon nanoplatforms. Biomaterials 35:9224–9235

    Article  CAS  Google Scholar 

  • Thiruvengadathan R, Belarde GM, Bezmelnitsyn A, Shub M, Balas-Hummers W, Gangopadhyay K, Gangopadhyay S (2012) Combustion characteristics of silicon-based nanoenergetic formulations with reduced electrostatic discharge sensitivity. Propell Explos Pyrotech 37:359–372

    Article  CAS  Google Scholar 

  • Timoshenko VY, Osminkina LA, Efimova AI, Golovan LA, Kaskarov PK, Kovalev D, Kunzner N, Gross E, Diener J, Koch F (2003) Anisotropy of optical absorption in birefringent porous silicon. Phys Rev B 67:113405

    Article  CAS  Google Scholar 

  • TV Y, Dittrich T, Sieber I, Rappich J, Kamenev BV, Kaskarov PK (2000) Laser induced melting of porous silicon. Phys Status Solidi 182:325–330

    Article  Google Scholar 

  • Tzur-Balter A, Gilert A, Massad-Ivanir N, Segal E (2013) Engineering porous silicon nanostructures as tunable carriers for mitoxantrone dihydrochloride. Acta Biomater 9:6208–6217

    Article  CAS  Google Scholar 

  • Weiss SM, Fauchet PM (2003) Electrically tunable porous silicon active mirrors. Phys Status Solidi 197:556–560

    Article  CAS  Google Scholar 

  • Wolkin MV, Jorne J, Fauchet PM, Allan G, Delerue C (1999) Electronic states and photoluminescence in porous silicon quantum dots: the role of oxygen. Phys Rev Lett 82(1):197

    Article  CAS  Google Scholar 

  • Zhang Q, Gu M (2005) Rheological properties and gelcasting of concentrated aqueous silicon suspension. Mater Sci Eng A 339:351–357

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leigh Canham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Canham, L. (2018). Tunable Properties of Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-71381-6_19

Download citation

Publish with us

Policies and ethics