Skip to main content

Forest Carbon Stock and Fluxes: Distribution, Biogeochemical Cycles, and Measurement Techniques

  • Living reference work entry
  • First Online:

Part of the book series: Encyclopedia of the UN Sustainable Development Goals ((ENUNSDG))

Definitions

Forest carbon stock :

It is the amount of carbon sequestered from the atmosphere and stored in a forest ecosystem, mainly within living biomass and soil and, to a lesser extent, in deadwood and litter.

Forest carbon flux :

It is the transfer of carbon (mass) to and from the per-unit forest area per unit time. Carbon efflux is the transfer of carbon out of the forest to another pool, and the influx is the transfer of carbon from other pools to the forest.

Forest carbon cycle :

It is the constant movement of carbon between the atmosphere and forests. The biological part of this cycle involves carbon sequestration by plants from the atmosphere via photosynthesis and loss of carbon through respiration and decay.

Forest carbon balance :

It is a dynamic process that can be calculated as the total carbon uptake by a forest minus the net carbon loss from the forest. The forest carbon balance is highly dependent on disturbances and environmental constraints.

Biomass...

This is a preview of subscription content, log in via an institution.

References

  • Anderson-Teixeira KJ, Wang MMH, Mcgarvey JC, Lebauer DS (2016) Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-db). Glob Chang Biol 22: 1690–1709

    Article  Google Scholar 

  • Ashton MS, Tyrrell ML, Spalding D, Gentry B (eds) (2012) Managing forest carbon in a changing climate. Springer, New York

    Google Scholar 

  • Baccini A, Walker W, Carvalho L, Farina M, Sulla-Menashe D, Houghton RA (2017) Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358:230–234

    Article  CAS  Google Scholar 

  • Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. PNAS 115:6506–6511

    Article  CAS  Google Scholar 

  • Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2:598–600

    Article  CAS  Google Scholar 

  • Beer C et al (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–838

    Article  CAS  Google Scholar 

  • Bello C et al (2015) Defaunation affects carbon storage in tropical forests. Sci Adv 1:e1501105

    Article  CAS  Google Scholar 

  • Blunden J, Arndt DS (eds) (2019) State of the climate in 2018. Bull Am Meteorol Soci 100:Si–S305

    Google Scholar 

  • Bosveld FC, Beljaars ACM (2001) The impact of sampling rate on eddy-covariance flux estimates. Agric For Meteorol 109:39–45

    Article  Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. FAO forestry paper 134. FAO, Rome

    Google Scholar 

  • Busch J, Engelmann J, Cook-Patton SC, Griscom BW, Kroeger T, Possingham H, Shyamsundar P (2019) Potential for low-cost carbon dioxide removal through tropical reforestation. Nat Clim Chang 9:463–466

    Article  CAS  Google Scholar 

  • Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11

    Article  Google Scholar 

  • Chao S (2012) Forest peoples: numbers across the world. Forest Peoples Programme

    Google Scholar 

  • Chave J et al (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    Article  CAS  Google Scholar 

  • Chave J et al (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol 20:3177–3190

    Article  Google Scholar 

  • Chave J et al (2019) Ground data are essential for biomass remote sensing missions. Surv Geophys 40:863–880

    Article  Google Scholar 

  • Chazdon RL (2014) Second growth: the promise of tropical forest regeneration in an age of deforestation. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Chazdon RL, Guariguata MR (2016) Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. Biotropica 48:716–730

    Article  Google Scholar 

  • Curtis PG, Slay CM, Harris NL, Tyukavina A, Hansen MC (2018) Classifying drivers of global forest loss. Science 361:1108–1111

    Article  CAS  Google Scholar 

  • Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293

    Article  CAS  Google Scholar 

  • Dong JR, Kaufmann RK, Myneni RB, Tucker CJ, Kauppi PE, Liski J, Buermann W, Alexeyev V, Hughes MK (2003) Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Remote Sens Environ 84:393–410

    Article  Google Scholar 

  • Drake JB, Knox RG, Dubayah RO, Clark DB, Condit R, Blair JB, Hofton M (2003) Above-ground biomass estimation in closed canopy neotropical forests using LiDAR remote sensing: factors affecting the generality of relationships. Glob Ecol Biogeogr 12:147–159

    Article  Google Scholar 

  • Edwards DP, Fisher B, Boyd E (2010) Protecting degraded rainforests: enhancement of forest carbon stocks under REDD+. Conserv Lett 3:313–316

    Article  Google Scholar 

  • Emanuel WR, Shugart HH, Stevenson M (1985) Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Climate Change 7:29–43

    Article  Google Scholar 

  • Espırito-Santo FDB et al (2014) Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nat Commun 5:3434

    Article  CAS  Google Scholar 

  • Fang JY, Chen AP, Peng CH, Zhao SQ, Ci L (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292:2320–2322

    Article  CAS  Google Scholar 

  • FAO (2016a) Global forest resources assessment 2015: how are the world’s forests changing? Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • FAO (2016b) Forestry for a low-carbon future- integrating forests and wood products in climate change strategies. FAO forestry paper 177. FAO, Rome

    Google Scholar 

  • Foley JA et al (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  Google Scholar 

  • Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2:045023

    Article  CAS  Google Scholar 

  • Hairiah K, Dewi S, Agus F, Velarde S, Ekadinata A, Rahayu S, van Noordwijk M (2011) Measuring carbon stocks across land use systems: a manual. World Agroforestry Centre (ICRAF), Bogor

    Google Scholar 

  • Hansen MC et al (2013) High-resolution global maps of 21st-century forest cover change. Science 342: 850–853

    Article  CAS  Google Scholar 

  • Houghton RA (2013) The emissions of carbon from deforestation and degradation in the tropics: past trends and future potential. Carbon Manage 4:539–546

    Article  CAS  Google Scholar 

  • Hughes RF, Asner GP, Baldwin JA, Mascaro J, Bufil LKK, Knapp DE (2018) Estimating aboveground carbon density across forest landscapes of Hawaii: combining FIA plot-derived estimates and airborne LiDAR. For Ecol Manag 424:323–337

    Article  Google Scholar 

  • Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA (2003) National-scale biomass estimation for United States tree species. For Sci 49:12–35

    Google Scholar 

  • Kayler Z, Janowiak M, Swanston C (2017) Global carbon. Climate Change Resource Center, U.S. Department of Agriculture, Forest Service, Washington, DC

    Google Scholar 

  • Keith R, Mackey BG, Lindenmayer DB (2009) Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. PNAS 106:11635–11640

    Article  CAS  Google Scholar 

  • Köchy M, Hiederer R, Freibauer A (2015) Global distribution of soil organic carbon–Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 1:351–365

    Article  CAS  Google Scholar 

  • Kondo M et al (2018) Plant regrowth as a driver of recent enhancement of terrestrial CO2 uptake. Geophys Res Lett 45:4820–4830

    Article  CAS  Google Scholar 

  • Lal R (2005) Forest soils and carbon sequestration. For Ecol Manag 220:242–258

    Article  Google Scholar 

  • Landell-Mills N, Porras IT (2002) Silver bullet or fools’ gold? A global review of markets for forest environmental services and their impact on the poor. International Institute for Environment and Development (IIED), London

    Google Scholar 

  • Laporte N, Justice C, Kendall J (1995) Mapping the dense humid forest of Cameroon and Zaire using AVHRR satellite data. Int J Remote Sens 16:1127–1145

    Article  Google Scholar 

  • Levesque J, King DJ (2003) Spatial analysis of radiometric fractions from high-resolution multispectral imagery for modelling individual tree crown and forest canopy structure and health. Remote Sens Environ 84:589–609

    Article  Google Scholar 

  • Lewis SL, Phillips OL, Baker TR (2006) Impacts of global atmospheric change on tropical forests. Trends Ecol Evol 21:173–174

    Article  Google Scholar 

  • Lewis SL, Edwards DP, Galbraith D (2015) Increasing human dominance of tropical forests. Science 349:827–832

    Article  CAS  Google Scholar 

  • Lo YH, Blanco JA, González de Andrés E, Imbert JB, Castillo FJ (2019) CO2 fertilization plays a minor role in long-term carbon accumulation patterns in temperate pine forests in the southwestern Pyrenees. Ecol Model 407:108737

    Article  CAS  Google Scholar 

  • Lu D (2006) The potential and challenge of remote sensing-based biomass estimation. Int J Remote Sens 27:1297–1328

    Article  Google Scholar 

  • Lu D, Batistella M (2005) Exploring TM image texture and its relationships with biomass estimation in Rondônia, Brazilian Amazon. Acta Amazon 35:249–257

    Article  Google Scholar 

  • Malhi Y, Grace J (2000) Tropical forests and atmospheric carbon dioxide. Trends Ecol Evol 15:332–337

    Article  CAS  Google Scholar 

  • Martin AR, Thomas SC (2011) A reassessment of carbon content in tropical trees. PLoS One 6:e23533

    Article  CAS  Google Scholar 

  • Mitchard ETA (2018) The tropical forest carbon cycle and climate change. Nature 559:527–534

    Article  CAS  Google Scholar 

  • Mukul SA (2016) Shifting cultivation in the upland secondary forests of the Philippines: biodiversity and carbon stock assessment, and ecosystem services trade-offs in land-use decisions. PhD thesis, The University of Queensland

    Google Scholar 

  • Mukul SA, Herbohn J (2016) The impacts of shifting cultivation on secondary forests dynamics in tropics: a synthesis of the key findings and spatio temporal distribution of research. Environ Sci Pol 55:167–177

    Article  Google Scholar 

  • Mukul SA, Herbohn J, Firn J (2016a) Tropical secondary forests regenerating after shifting cultivation in the Philippines uplands are important carbon sinks. Sci Rep 6:22483

    Article  CAS  Google Scholar 

  • Mukul SA, Herbohn J, Firn J (2016b) Co-benefits of biodiversity and carbon sequestration from secondary forests in the Philippine uplands: implications for forest landscape restoration. Biotropica 48:882–889

    Article  Google Scholar 

  • Mukul SA, Huq S, Herbohn J, Nishat A, Rahman AA, Amin R, Ahmed FU (2019a) Rohingya refugees and the environment. Science 364:138

    Article  CAS  Google Scholar 

  • Mukul SA et al (2019b) Combined effects of climate change and sea-level rise project dramatic habitat loss of the globally endangered Bengal tiger in the Bangladesh Sundarbans. Sci Total Environ 663:830–840

    Article  CAS  Google Scholar 

  • Muukkonen P, Heiskanen J (2007) Biomass estimation over a large area based on stand wise forest inventory data and ASTER and MODIS satellite data: a possibility to verify carbon inventories. Remote Sens Environ 107:617–624

    Article  Google Scholar 

  • Pan Y et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  Google Scholar 

  • Pan Y, Birdsey RA, Phillips OL, Jackson RB (2013) The structure, distribution, and biomass of the world’s forests. Annu Rev Ecol Evol Syst 44:593–622

    Article  Google Scholar 

  • Parrotta JA, Wildburger C, Mansourian S (eds) (2012) Understanding relationships between biodiversity, carbon, forests and people: the key to achieving REDD+ objectives. A global assessment report. IUFRO world series, vol 31. International Union of Forest Research Organizations (IUFRO), Vienna

    Google Scholar 

  • Petrokofsky G, Holmgren P, Brown ND (2011) Reliable forest carbon monitoring –systematic reviews as a tool for validating the knowledge base. Int For Rev 13: 56–66

    Google Scholar 

  • Phillips OL et al (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442

    Article  CAS  Google Scholar 

  • Prentice IC et al (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ et al (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, UK, pp 183–237

    Google Scholar 

  • Price DT et al (2013) Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ Rev 21:322–365

    Article  Google Scholar 

  • Pugh TAM et al (2019) Role of forest regrowth in global carbon sink dynamics. PNAS 116:4382–4387

    Article  CAS  Google Scholar 

  • Qie L et al (2017) Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat Commun 8:1966

    Article  CAS  Google Scholar 

  • Roxburgh SH, Paul KI, Clifford D, England JR, Raison RJ (2015) Guidelines for constructing allometric models for the prediction of woody biomass: how many individuals to harvest? Ecosphere 6:38

    Article  Google Scholar 

  • Saatchi SS et al (2013) Benchmark map of forest carbon stocks in tropical regions across three continents. PNAS 108:9899–9904

    Article  Google Scholar 

  • Saner P, Loh YY, Ong RC, Hector A (2012) Carbon stocks and fluxes in tropical lowland dipterocarp rainforests in Sabah, Malaysian Borneo. PLoS One 7:e29642

    Article  CAS  Google Scholar 

  • Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manage 5:81–91

    Article  CAS  Google Scholar 

  • Scheffera M, Hirotaa M, Holmgren M, Nes EHV, Chapin FS III (2012) Thresholds for boreal biome transitions. PNAS 102:21384–21389

    Article  Google Scholar 

  • Schroeder P, Brown S, Mo J, Birdsey R, Cieszewski C (1997) Biomass estimation for temperate broadleaf forests of the United States using inventory data. For Sci 43:424–434

    Google Scholar 

  • Schulze ED, Wirth C, Heimann M (2000) Managing forests after Kyoto. Science 289:2058–2059

    Article  CAS  Google Scholar 

  • Schulze ED, Beck E, Buchmann N, Clemens S, Müller-Hohenstein K, Scherer-Lorenzen M (2019) Plant ecology, 2nd edn. Springer Nature, New York

    Book  Google Scholar 

  • Steidinger BS et al (2019) Climatic controls of decomposition drive the global biogeography of forest tree symbioses. Nature 569:404–408

    Article  CAS  Google Scholar 

  • Stephenson NL, van Mantgem PJ (2005) Forest turnover rates follow global and regional patterns of productivity. Ecol Lett 8:524–531

    Article  Google Scholar 

  • Sullivan MJP et al (2016) Diversity and carbon storage across the tropical forest biome. Sci Rep 7:39102

    Article  CAS  Google Scholar 

  • Sun G, Ranson KJ, Kharuk VI (2002) Radiometric slope correction for forest biomass estimation from SAR data in the Western Sayani Mountains, Siberia. Remote Sens Environ 79:279–287

    Article  Google Scholar 

  • Thomas SC, Halim MA, Gale NV, Sujeeun L (2019) Biochar enhancement of facilitation effects in agroforestry: early growth and physiological responses in a maize-leucaena model system. Agrofor Syst 93: 2213–2225

    Article  Google Scholar 

  • van der Werf GR et al (2009) CO2 emissions from forest loss. Nat Geosci 2:737–738

    Article  CAS  Google Scholar 

  • Wang S, Chen JM, Ju WM, Feng X, Chen M, Chen P, Yu G (2007) Carbon sinks and sources in China’s forests during 1901–2001. J Environ Manag 85: 524–537

    Article  CAS  Google Scholar 

  • Woodbury PB, Smith JE, Heath LS (2007) Carbon sequestration in the US forest sector from 1990 to 2010. For Ecol Manag 241:14–27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharif A. Mukul .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mukul, S.A., Halim, M.A., Herbohn, J. (2020). Forest Carbon Stock and Fluxes: Distribution, Biogeochemical Cycles, and Measurement Techniques. In: Leal Filho, W., Azul, A., Brandli, L., Lange Salvia, A., Wall, T. (eds) Life on Land. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-71065-5_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71065-5_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71065-5

  • Online ISBN: 978-3-319-71065-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics