Skip to main content

Biodiversity and Biogeography of Zooplankton: Implications of Climate Change

  • Living reference work entry
  • First Online:
Book cover Climate Action

Part of the book series: Encyclopedia of the UN Sustainable Development Goals ((ENUNSDG))

  • 189 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ássthorson OS, Gislason A (1995) Long-term changes in zooplankton biomass in Icelandic waters in spring. ICES J Mar Sci 52:657–668

    Article  Google Scholar 

  • Azeiteiro UM, MORGADO FM (1996) A comparison of the macrozooplankton in two different channels of Ria de Aveiro (Northern Portugal). Ciênc Biol Ecol Syst 16(1/2):61–74

    Google Scholar 

  • Azeiteiro UM, Marques SC, Vieira LR, Pastorinho R, Ré P, Pereira MJ, Morgado F (2005) Dynamics of The Acartia Genus (Calanoida: Copepoda) In A Temperate Shallow Estuary (The Mondego Estuary: Western Coast Of Portugal). Acta Adriat 46:7–20

    Google Scholar 

  • Benedetti F, Ayata S-D, Irisson J-O, Adloff F, Guilhaumom F (2019) Climate change may have minor impact on zooplankton functional diversity in the Mediterranean Sea. Divers Distrib 25:568–581. https://doi.org/10.1111/ddi.12857

    Article  Google Scholar 

  • Boltovskoy D (1988) Pelagic biogeography: background, gaps and trends In: PierrotBults AC, Van der Spoel S (eds) Pelagic biogeography ICoPB II. Proceedings of the 2nd international conference. IOC workshop report 142. pp 53–64

    Google Scholar 

  • Brun P, Stamieszkin K, Visser AW, Licandro P, Payne MR, Kiorboe T (2019) Climate change has altered zooplankton-fuelled carbon export in the North Atlantic. Nat Ecol Evol 3:416–423

    Article  Google Scholar 

  • Carrasco S, Lozano O (1989) Seasonal and long-term variations of zooplankton volumes in the Peruvian Sea, 1964e1987. In: Pauly D, Muck P, Mendo J, Tsukayama I (eds) The Peruvian upwelling ecosystem: dynamics and interactions. ICLARM conference proceedings, vol 18. pp 82e85

    Google Scholar 

  • Deason EE, Smayda TJ (1982) Ctenophore-zooplankton-phytoplankton interactions in Narragansett Bay, Rhode Island, USA during 1972e1977. J Plankton Res 4:203–217

    Article  Google Scholar 

  • DFO (2000) State of the phytoplankton, zooplankton and krill on the Scotian Shelf in 1998. DFO science stock status report G3-02 (2000)

    Google Scholar 

  • Doney SC, Ruckelshaus M, Emmett Duffy J, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Annu Rev Mar Sci 4:11–37

    Article  Google Scholar 

  • Escribano R, Hidalgo P (2000) Influence of El Niño and La Niña on the population dynamics of Calanus chilensis in the Humboldt Current ecosystem of northern Chile. ICES J Mar Sci 57:1867–1874

    Article  Google Scholar 

  • Evans F, Edwards A (1993) Changes in the zooplankton community off the coast of Northumberland between 1969 and 1988, with notes on changes in the phytoplankton and the benthos. J Exp Mar Biol Ecol 172:11–31

    Article  Google Scholar 

  • Greve W, Reiners F, NAST J (1996) Biocoenotic changes of the zooplankton in the German Bight: the possible effects of eutrophication and climate. ICES J Mar Sci 53:951e956

    Article  Google Scholar 

  • Hirai J, Katakura S, Kasai H, Nagai S (2017) Cryptic zooplankton diversity revealed by a metagenetic approach to monitoring metazoan communities in the coastal waters of the Okhotsk Sea, northeastern Hokkaido. Front Mar Sci 4:379. https://doi.org/10.3389/fmars.2017.00379

    Article  Google Scholar 

  • IPCC (2014) Climate Change, 2014. Impacts, adaptation, and vulnerability. Summaries, frequently asked questions, and cross-chapter boxes. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) A contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. World Meteorological Organization, Geneva, 190 pp

    Google Scholar 

  • International Year of Biodiversity (2010) Biodiversity is life, Biodiversity is our life. Biodiversity and UNESCO: human well-being through science, culture, education and communication. Unesco editions, 4 pp

    Google Scholar 

  • Kang YS, Kim JY, Kim HG, Park JH (2002) Long-term changes in zooplankton and its relationship with squid, Todarodes pacificus, catch in Japan/East Sea. Fish Oceanogr 11:337–346

    Article  Google Scholar 

  • Kasai H, Saito H, Kashiwai M, Taneda T, Kusaka A, Kawasaki Y, Kono T, Taguchi S, Tsuda A (2001) Seasonal and interannual variations in nutrients and plankton in the Oyashio region: a summary of a 10-years observation along the A-line. Bull Hokkaido Natl Fish Res Inst 65:55–134

    Google Scholar 

  • Kobari T, Ikeda T (2001) 180° longitude e oceanographic time-series information. PICES Scientific Report 18. pp 114–118

    Google Scholar 

  • Kwiatkowski L, Aumont O, Bopp L, Ciais P (2018) The impact of variable phytoplankton stoichiometry on projections of primary production, food quality, and carbon uptake in the global ocean. Glob Biogeochem Cycles 32:516–528. https://doi.org/10.1002/2017GB005799

    Article  CAS  Google Scholar 

  • Leandro SM, Morgado F, Pereira F, Queiroga H (2007) Temporal changes of abundance, biomass and production of copepod community in a shallow temperate estuary (Ria de Aveiro, Portugal). Estuar Coastal Shelf Sci 74:215–222

    Article  Google Scholar 

  • Licandro P, Ibanez F (2000) Changes of zooplankton communities in the Gulf of Tigullio (Ligurian Sea, western Mediterranean) from 1985 to 1995. Influence of hydroclimatic factors. J Plankton Res 22:2225–2253

    Article  Google Scholar 

  • Mackas DL, Goldblatt R, Lewis AG (1998) Interdecadal variation in developmental timing of Neocalanus plumchrus populations at Ocean Station P in the Subarctic North Pacific. Can J Fish Aquat Sci 55: 1878–1893

    Article  Google Scholar 

  • Mackas DL, Thomson RE, Galbraith M (2001) Changes in the zooplankton community of the British Columbia continental margin and their covariation with oceanographic conditions. Can J Fish Aquat Sci 58:685–702

    Article  Google Scholar 

  • Mazzochi MG, Ribera D’Alcala M (1995) Recurrent patterns in zooplankton structure and succession in a variable coastal environment. ICES J Mar Sci 52:671–691

    Article  Google Scholar 

  • Morgado F (1991) Zooplâncton da Ria de Aveiro. Composição e distribuição das comunidades do Canal de Mira num ciclo anual. Rev Biol U Aveiro 4:157–172

    Google Scholar 

  • Morgado F (1997) Ecologia do Zooplâncton da Ria de Aveiro. Caracterização espacio-temporal, transporte longitudinal e dinâmica tidal, nictemeral e lunar. PhD thesis, Universidade de Aveiro, 385 pp

    Google Scholar 

  • Morgado F, Melo R, Queiroga H, Sorbe JC (2003a) Zooplankton abundance in a coastal station off the Ria de Aveiro inlet (north-western Portugal): relation with tidal and day/night cycles. Acta Oecol 24:175–181

    Article  Google Scholar 

  • Morgado F, Antunes C, Pastorinho R (2003b) Distribution and patterns of emergence of suprabenthic and pelagic crustaceans from a shallow temperate estuary (Ria de Aveiro, Portugal). Acta Oecol 24:205–217

    Article  Google Scholar 

  • Morgado F, Pastorinho R, Quintaneiro C, Ré P (2006a) Vertical distribution and trophic structure of the macrozooplankton in shallow temperate estuary (Ria de Aveiro, Portugal). Sci Mar 70:177–188

    Article  Google Scholar 

  • Morgado F, Ré P, Silva N, Azeiteiro UM (2006b) Comparison of the zooplankton from two different temperate tidal systems in Western Portugal: the Mondego Estuary and Ria de Aveiro Lagoon. Int J Lakes Rivers 1:65–74

    Google Scholar 

  • Morgado F, Antunes C, Rodrigues E, Pastorinho R, Vieira LR, Azeiteiro UM (2007) Composition and trophic structure of zooplankton in a shallow temperate estuary (Mondego Estuary, Western Portugal). Zool Stud 46:57–68

    Google Scholar 

  • Morgado F, Terdalkar S, Gadelha JR, Pereira ML (2013) Histology and histochemistry of the reproductive potential of Acartia clausi (copepoda: calanoida). Microsc Microanal 19(Suppl 4):91–92. ISSN 1431-9276

    Article  CAS  Google Scholar 

  • Morgado F, Vieira LR, Ré P, Soares AMVM (2014) Atlas do zooplâncton estuarino e marinho da costa Atlântica. Colecção Biologicando, Editora Afrontamento, Porto, 167 pp

    Google Scholar 

  • Morgado F, Posada NG, Chavez MG, Soares AMVM, Lopez MAG (2015) Pattern recognition techniques for biological tissues differentiation in planktonic organisms. Microsc Microanal 21(S6):72–73. ISSN 1435-8115

    Article  CAS  Google Scholar 

  • Muzavor SNX (1981) Contribuição para o estudo do zooplâncton nas águas dos Açores. Arquipélago Série Ciências da Natureza 2:153–163

    Google Scholar 

  • Nakata K, Koyama S, Matsukawa Y (2001) Interannual variation in spring biomass and gut content composition of copepods in the Kuroshio current, 1971e89. Fish Oceanogr 10:329–341

    Article  Google Scholar 

  • Ohlberger J, Thackeray SJ, Winfield IJ, Maberly SC, Vollestad LA (2014) When phenology matters: age-size truncation alters population response to trophic mismatch. P Roy Soc B 281(1793):20140938-20140938

    Article  Google Scholar 

  • Pastorinho R, Guevara, MA, Silva A, Coelho L, Morgado F (2005) Development a new index to evaluate Zooplanktons’ gonads: an approach based on a suitable combination of deformable models. In: Lecture notes for computer science. Lecture notes in artificial intelligence and lecture notes in bioinformatics, vol 3773. pp 498–505

    Google Scholar 

  • Perry RI, Batchelder HP, Mackas DL, Chiba S, Durbin E, Greve W, Verheye HM (2004) Identifying global synchronies in marine zooplankton populations: issues and opportunities. ICES J Mar Sci 61:445–456. https://doi.org/10.1016/j.icesjms.2004.03.022

    Article  Google Scholar 

  • Peterson WT, Keister JE (2003) Interannual variability in copepod community composition at a coastal station in the northern California Current: a multivariate approach. Deep-Sea Res II Top Stud Oceanogr 50:2499–2517

    Article  Google Scholar 

  • Ré P, Azeiteiro UMM, Morgado F (2005) Ecologia do Plâncton marinho e estuarino. Editora Afrontamento, Porto, p 140

    Google Scholar 

  • Richardson AJ (2006) Using continuous plankton recorder data. Prog Oceanogr 68:27–74

    Article  Google Scholar 

  • Richardson AJ (2008) In hot water: zooplankton and climate change. ICES J Mar Sci 65:279–295

    Article  Google Scholar 

  • Romagnan JB, Aldamman L, Gasparini S, Nival P, Aubert A, Jamet JL, Stemmann L (2016) High frequency mesozooplankton monitoring: can imaging systems and automated sample analysis help us describe and interpret changes in zooplankton community composition and size structure – an example from a coastal site. J Mar Syst 162:18–28

    Article  Google Scholar 

  • Santos A, Garrido S (2000) A bibliometric study of Portuguese plankton literature: a preliminary analysis, Relatórios Científicos e Técnicos do IPIMAR, edição do IPIMAR, Av de Brasília, 1449-006, Lisboa, Portugal

    Google Scholar 

  • Sherman K (1980) MARMAP, a fisheries ecosystem study in the northwest Atlantic: fluctuations in ichthyoplankton-zooplankton components and their potential for impact on the system. In Advanced concepts in ocean measurements for marine biology. Ed. by F. P. Diemer, F. J. Vernberg, and D. Z. Mirkes. Belle W. Baruch Institute of Marine Biology and Coastal Research, Georgetown

    Google Scholar 

  • Siegel V, Loeb V, Groeger J (1998) Krill (Euphausia superba) density, proportional and absolute recruitment and biomass in the Elephant Island region (Antarctic Peninsula) during the period 1977 to 1997. Polar Biol 19:393e398

    Article  Google Scholar 

  • Sobrinho-Gonçalves L, Isibro E (2001) Fish larvae and zooplankton biomass around Faial island (Azores Archipelago). A preliminary study of species occurrence and relative abundance. Arquipélago. Ciências Biológicas e Marinhas 18:35–52. ISSN 0873-4704

    Google Scholar 

  • Tadokoro K (2001) Long-term variations of plankton biomass in the North Pacific. PICES Scientific Report 18. pp 132–136

    Google Scholar 

  • Unterruberbacher HK (1964) Zooplankton studies in the waters off Walvis Bay with special reference to the Copepoda. Administration of South West Africa Marine Research Labora-tory Investigational Report 11. pp 1–42

    Google Scholar 

  • Verheye HM (2000) Decadal-scale trends across several marine trophic levels in the southern Benguela upwelling system off South Africa. Ambio 29:30–34

    Article  Google Scholar 

  • Vieira LR, Ré P, Morgado F, Pereira M, Marques JC, Azeiteiro UM (2002) Distribution and production of Acartia bifilosa var. inermis from a temperate estuary (Mondego Estuary, Portugal). Arquivos do Museu Bocage 17:421–440

    Google Scholar 

  • Vieira LR, Azeiteiro UM, Ré P, Pastorinho R, Marques JC, Morgado F (2003a) Zooplankton distribution in a temperate estuary (Mondego estuary southern arm: Western Portugal). Acta Oecol 24:163–173

    Article  Google Scholar 

  • Vieira LR, Morgado F, Ré P, Nogueira A, Pastorinho R, Pereira M, Bacelar-Nicolau P, Marques JC, Azeiteiro UM (2003b) Population dynamics of Acartia clausi from a temperate estuary (Mondego Estuary, Western Portugal). Invertebr Reprod Dev 44:9–15

    Article  Google Scholar 

  • Vieira LR, Guilhermino L, Morgado F (2015) Zooplankton structure and dynamics in two estuaries from the Atlantic coast in relation to multi-stressor exposure. Estuar Coast Shelf Sci 167:347–367

    Article  CAS  Google Scholar 

  • Villarino E, Chust G, Licandro P, Butenschön M, Ibaibarriaga L, Larrañaga A, Irigoien X (2015) Modelling the future biogeography of North Atlantic zooplankton communities in response to climate change. Mar Ecol Prog Ser 531:121–142. https://doi.org/10.3354/meps11299

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Morgado .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Morgado, F., Vieira, L.R. (2019). Biodiversity and Biogeography of Zooplankton: Implications of Climate Change. In: Leal Filho, W., Azul, A., Brandli, L., Özuyar, P., Wall, T. (eds) Climate Action. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-71063-1_119-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71063-1_119-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71063-1

  • Online ISBN: 978-3-319-71063-1

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics