Skip to main content

Land-Use Land Cover Change and Forestry (LULCCF)

  • Living reference work entry
  • First Online:
Climate Action

Definitions

The IPCC (The Intergovernmental Panel on Climate Change) refers to LULCCFLand-use Land Cover Change and Forestry – as (i) the changes of use of land (e.g., forests converted into croplands with removal or burning of forest’s biomass) or (ii) the changes in biomass quantity in existing forests or natural vegetation (Watson et al. 2000).

Land use is related to the way humans use land (e.g., agriculture or pasture). Land cover is the biophysical features of the land (e.g., forest, savanna or desert). Land-use change may impact or change the land cover and, likewise, land-cover change may impact or change land use (Zvoleff et al. 2014). When considering forests, forest land use is linked to land management and depends on social and economic factors. On the other hand, forest land cover is the biological characteristics of the forest covering land surface (Watson et al. 2000).

The major difference between these two definitions is related to time and final purpose. A forest...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alig RJ, Plantinga AJ (2004) Future forest land area: impacts from population growth and other factors that affect land values. J For 102:19–24

    Google Scholar 

  • Belward AS, Skøien JO (2015) Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS J Photogramm Remote Sens 103:115–128. https://doi.org/10.1016/j.isprsjprs.2014.03.009

    Article  Google Scholar 

  • Brunette M, Bourke R, Hanewinkel M, Yousefpour R (2018) Adaptation to climate change in forestry: a multiple correspondence analysis (MCA). Forest 9(1):1–14. https://doi.org/10.3390/f9010020

    Article  Google Scholar 

  • Chen J, Chen J, Liao A, Cao X, Chen L, Chen X, He C, Han G, Peng S, Lu M, Zhang W, Tong X, Mills J (2014) Global land cover mapping at 30 m resolution: a POK-based operational approach. ISPRS J Photogramm Remote Sens 103:7–27. https://doi.org/10.1016/j.isprsjprs.2014.09.002

    Article  Google Scholar 

  • Congalton RG, Gu J, Yadav K, Thenkabail P, Ozdogan M (2014) Global land cover mapping: a review and uncertainty analysis. Remote Sens 6:12070–12093. https://doi.org/10.3390/rs61212070

    Article  Google Scholar 

  • Coulston JW, Reams GA, Wear DN, Brewer CK (2014) An analysis of forest land use, forest land cover and change at policy-relevant scales. Forestry 87(2):267–276. https://doi.org/10.1093/forestry/cpt056

    Article  Google Scholar 

  • Crespo Cuaresma J, Danylo O, Fritz S, McCallum I, Obersteiner M, See L, Walsh B (2017) Economic development and forest cover: evidence from satellite data. Sci Rep 7. https://doi.org/10.1038/srep40678

  • Curtis PG, Slay CM, Harris NL, Tyukavina A, Hansen MC (2018) Classifying drivers of global forest loss. Science 361:1108–1111. https://doi.org/10.1126/science.aau3445

    Article  CAS  Google Scholar 

  • Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Gutierrez V et al (2017) Trees, forests and water: cool insights for a hot world. Glob Environ Chang 43:51–61. https://doi.org/10.1016/j.gloenvcha.2017.01.002

    Article  Google Scholar 

  • Friedlingstein P et al (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353

    Article  Google Scholar 

  • Geist H, McConnell W, Lambin EF, Moran E, Alves D, Rudel T (2006) Causes and trajectories of land-use/cover change. In: Land-use and land-cover change. Springer, Berlin/Heidelberg, pp 41–70

    Chapter  Google Scholar 

  • Gómez C, Wulder MA, White JC, Montes F, Delgado JA (2012) Characterizing 25 years of change in the area, distribution, and carbon stock of Mediterranean pines in Central Spain. Int J Remote Sens 33:5546–5573. https://doi.org/10.1080/01431161.2012.663115

    Article  Google Scholar 

  • Gómez C, White JC, Wulder MA (2016) Optical remotely sensed time series data for land cover classification: a review. ISPRS J Photogramm Remote Sens 116:55–72. https://doi.org/10.1016/j.isprsjprs.2016.03.008

    Article  Google Scholar 

  • Griscom BW, Adams J, Ellis PW, Houghton RA, Lomax G, Miteva DA et al (2017) Natural climate solutions. Proc Natl Acad Sci 114:11645–11650

    Article  CAS  Google Scholar 

  • Hansen MC, Krylov A, Tyukavina A, Potapov PV, Turubanova S, Zutta B et al (2016) Humid tropical forest disturbance alerts using Landsat data. Environ Res Lett 11:034008

    Article  Google Scholar 

  • Hoyos L, Cabido M, Cingolani A (2018) A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina. ISPRS Int J Geo Inf 7:170. https://doi.org/10.3390/ijgi7050170

    Article  Google Scholar 

  • IPCC – Intergovernmental Panel on Climate Change (2001) Climate change 2001 – impacts, adaptation and vulnerability. IPCC third assessment report. Cambridge University Press, Cambridge, MA

    Google Scholar 

  • IPCC – Intergovernmental Panel on Climate Change (2014) Climate change 2014 – impacts, adaptation and vulnerability: part A: global and sectoral aspects. Cambridge University Press, Cambridge, MA. https://doi.org/10.1017/CBO9781107415379

    Book  Google Scholar 

  • Keenan RJ (2015) Climate change impacts and adaptation in forest management: a review. Ann For Sci 72:145–167. https://doi.org/10.1007/s13595-014-0446-5

    Article  Google Scholar 

  • Kennedy RE, Andréfouët S, Cohen WB, Gómez C, Griffiths P, Hais M, Healey SP, Helmer EH, Hostert P, Lyons MB, Meigs GW, Pflugmacher D, Phinn SR, Powell SL, Scarth P, Sen S, Schroeder TA, Schneider A, Sonnenschein R, Vogelmann JE, Wulder MA, Zhu Z (2014) Bringing an ecological view of change to landsat-based remote sensing. Front Ecol Environ 12:339–346. https://doi.org/10.1890/130066

    Article  Google Scholar 

  • Kosmidou V, Petrou Z, Bunce RGH, Mücher CA, Jongman RHG, Bogers MMB, Lucas RM, Tomaselli V, Blonda P, Padoa-Schioppa E, Manakos I, Petrou M (2014) Harmonization of the land cover classification system (LCCS) with the general habitat categories (GHC) classification system. Ecol Indic 36:290–300. https://doi.org/10.1016/j.ecolind.2013.07.025

    Article  Google Scholar 

  • Kuikman P, Matthews R, Watterson J, Ward J, Lesschen JP, Mackie E, Webb J, Oenema O (2011) Policy options for including LULUCF in the EU reduction commitment and policy instruments for increasing GHG mitigation efforts in the LULUCF and agriculture sectors. Synthesis report

    Google Scholar 

  • Kurz WA (2010) An ecosystem context for global gross forest cover loss estimates. Proc Natl Acad Sci 107:9025–9026

    Article  CAS  Google Scholar 

  • Lambin EF, Meyfroidt P (2010) Land use transitions: socio-ecological feedback versus socio-economic change. Land Use Policy 27:108–118. https://doi.org/10.1016/j.landusepol.2009.09.003

    Article  Google Scholar 

  • Law BE, Hudiburg TW, Berner LT, Kent JJ, Buotte PC, Harmon ME (2018) Land use strategies to mitigate climate change in carbon-dense temperate forests. Proc Natl Acad Sci 12:201720064. http://www.pnas.org/lookup/doi/10.1073/pnas.1720064115

  • Li J, Roy DP (2017) A global analysis of Sentinel-2a, Sentinel-2b and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sens 9:902. https://doi.org/10.3390/rs9090902

    Article  Google Scholar 

  • Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L, Merchant JW (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Remote Sens 21:1303–1330. https://doi.org/10.1080/014311600210191

    Article  Google Scholar 

  • Luyssaert S, Marie G, Valade A, Chen YY, Djomo SN, Ryder J et al (2018) Trade-offs in using European forests to meet climate objectives. Nature 562:259

    Article  CAS  Google Scholar 

  • Mendenhall CD, Daily GC, Ehrlich PR (2012) Improving estimates of biodiversity loss. Biol Conserv 151:32–34

    Article  Google Scholar 

  • Meyfroidt P, Lambin EF, Erb K-H, Hertel TW (2013) Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr Opin Environ Sustain 5:438–444. https://doi.org/10.1016/j.cosust.2013.04.003

    Article  Google Scholar 

  • Olthof I, Fraser RH (2014) Detecting landscape changes in high latitude environments using landsat trend analysis: 2. classification. Remote Sens 6:11558–11578. https://doi.org/10.3390/rs61111558

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  Google Scholar 

  • Pickering J, Stehman SV, Tyukavina A, Potapov P, Watt P, Jantz SM et al (2019) Quantifying the trade-off between cost and precision in estimating area of forest loss and degradation using probability sampling in Guyana. Remote Sens Environ 221:122–135. https://doi.org/10.1016/j.rse.2018.11.018

    Article  Google Scholar 

  • Ramankutty N et al (2006) Global land-cover change: recent progress, remaining challenges. In: Lambin EF, Geist H (eds) Land-use and land-cover change. Global change – the IGBP series. Springer, Berlin/Heidelberg

    Google Scholar 

  • Reid RS, Fernández-Giménez ME, Galvin KA (2014) Dynamics and resilience of rangelands and pastoral peoples around the Globe. Annu Rev Environ Resour 39:217–242. https://doi.org/10.1146/annurev-environ-020713-163329

    Article  Google Scholar 

  • Richardson GRA (2010) Adapting to climate change: an introduction for Canadian municipalities. Government of Canada, Ottawa. http://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/earthsciences/pdf/mun/pdf/mun_e.pdf

  • Rudel TK (2009) Tree farms: driving forces and regional patterns in the global expansion of forest plantations. Land Use Policy 26:545–550

    Article  Google Scholar 

  • Song X-P, Hansen MC, Stehman SV, Potapov PV, Tyukavina A, Vermote EF, Townshend JR (2018) Global land change from 1982 to 2016. Nature 560:639–643. https://doi.org/10.1038/s41586-018-0411-9

    Article  CAS  Google Scholar 

  • Teffera ZL, Li J, Debsu TM, Menegesha BY (2018) Assessing land use and land cover dynamics using composites of spectral indices and principal component analysis: a case study in middle Awash subbasin, Ethiopia. Appl Geogr 96:109–129. https://doi.org/10.1016/j.apgeog.2018.05.015

    Article  Google Scholar 

  • Tromborg E, Ranta T, Schweinle J, Solberg B, Skjevrak G, Tiffany DG (2013) Economic sustainability for wood pellets production: a comparative study between Finland, Germany, Norway, Sweden and the US. Biomass Bioenergy 57:68–77

    Article  Google Scholar 

  • UNCCD – United Nations Convention to Combat Climate Change (2017) Global land outlook, 1st edn. UNCCD, Bonn

    Google Scholar 

  • UNCCD – United Nations Convention to Combat Climate Change (2018) Global land outlook. https://knowledge.unccd.int/glo. Accessed 21 Sept 2018

  • UNFCCC – United Nations Framework Convention on Climate Change (2008) Kyoto protocol reference manual on accounting of emissions and assigned amount. UNFCCC, Bonn

    Google Scholar 

  • UNFCCC – United Nations Framework Convention on Climate Change (2018) Climate neutral now. https://unfccc.int/climate-action/climate-neutral-now. Accessed 21 Sept 2018

  • United Nations (2015a) Paris agreement. United Nations, New York

    Google Scholar 

  • United Nations (2015b) Transforming our world: the 2030 agenda for sustainable development. Resolution adopted by the General Assembly. United Nations, New York

    Google Scholar 

  • Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (2000) IPCC special report on land use, land-use change and forestry – summary for policymakers. Intergovernmental Panel on Climate Change IPCC, Geneva

    Google Scholar 

  • Wulder MA, Hilker T, White JC, Coops NC, Masek JG, Pflugmacher D, Crevier Y (2015) Virtual constellations for global terrestrial monitoring. Remote Sens Environ 170:62–76. https://doi.org/10.1016/j.rse.2015.09.001

    Article  Google Scholar 

  • Zvoleff A, Wandersee S, An L, López-Carr D (2014) Land use and cover change. Geogr Oxf Bibliogr 26. https://doi.org/10.1093/OBO/9780199874002-0105

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos de Oliveira Galvão .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rufino, I.A.A., Galvão, C.d.O., Cunha, J.E.d.B.L. (2019). Land-Use Land Cover Change and Forestry (LULCCF). In: Leal Filho, W., Azul, A., Brandli, L., Özuyar, P., Wall, T. (eds) Climate Action. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-71063-1_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71063-1_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71063-1

  • Online ISBN: 978-3-319-71063-1

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics