Skip to main content

Circular Economy and Urban Mining: Resource Efficiency in the Construction Sector for Sustainable Cities

  • Living reference work entry
  • First Online:
Sustainable Cities and Communities

Definition

Urban mining is the activity of recovering materials and energy from anthropogenic stocks, and the buildings are one of the most important stocks in the city context, since the construction sector is responsible for high rates of natural resource extraction and consumption. It can be defined as a circular economy strategy in a macro level, as it is capable of returning construction and demolition wastes as raw materials in the industrial process.

Introduction

Cities are dynamic anthropogenic systems with a particular metabolism. Inputs of materials, energy, and information are processed and transformed into large quantities of consumer goods, essential to constant supplying population needs in growing urban settlements (UN-HABITAT 2016; Baccini and Brunner 2018). Since the twentieth century, consumption has become the fundamental basis of the capitalist society and synonymous of development and success. Commodities and goods are intentionally designed to last each time...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arora R, Paterok K, Banerjee A, Saluja MS (2017) Potential and relevance of urban mining in the context of sustainable cities. IIMB Manag Rev 29(3):210–224. Elsevier Ltd. https://doi.org/10.1016/j.iimb.2017.06.001

    Article  Google Scholar 

  • Baccini P, Brunner PH (2018) Metabolism of the anthroposphere. 2nd ed., Cambridge, MA: The MIT Press, 2012.

    Google Scholar 

  • Pauw I, Bakker C, Van Der Grinten B (2016) Product design and business model strategies for a circular economy. Journal of Industrial and Production Engineering, v. 33, n. 5, p. 308–320.

    Google Scholar 

  • Brøgger M, Wittchen KB (2017) Estimating the energy-saving potential in national building stocks – a methodology review. Renew Sust Energ Rev 82(part 1):1–8. Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.05.239

    Article  Google Scholar 

  • Brunner PH (2011) Urban mining a contribution to reindustrializing the city. J Ind Ecol 15(3):339–341

    Article  Google Scholar 

  • Brunner PH, Rechberger H (2015) Waste to energy – key element for sustainable waste management. Waste Manag 37:3–12. Pergamon. http://www.sciencedirect.com/science/article/pii/S0956053X14000543

    Article  CAS  Google Scholar 

  • Cabeza LF, Barreneche C, Miró L (2013) Low carbon and low embodied energy materials in buildings: a review. Renew Sust Energ Rev 23:536–542

    Article  CAS  Google Scholar 

  • Callen T (2008) What is Gross Domestic Product? Finance and Development. December, 2008.

    Google Scholar 

  • Coelho A, De Brito J (2012) Influence of construction and demolition waste management on the environmental impact of buildings. Waste Manag 32(3):357–358

    Article  Google Scholar 

  • Condeixa K, Haddad A, Boer D (2017) Material flow analysis of the residential building stock at the city of Rio de Janeiro. J Clean Prod 149:1249–1267

    Article  Google Scholar 

  • Cooper T (1999) Creating an economic infrastructure for sustainable product design. Journal of Sustainable Product Design, v. 8, p. 7–17.

    Google Scholar 

  • Cossu R, Williams ID (2015) Urban mining: concepts, terminology, challenges. Waste Manag 45:1–3

    Article  Google Scholar 

  • Cui J, Forssberg E (2003) Mechanical recycling of waste electric and electronic equipment: a review. J Hazard Mater 99(3):243–263. http://www.sciencedirect.com/science/article/pii/S030438940300061X

    Article  CAS  Google Scholar 

  • Cui J, Zhang L (2008) Metallurgical recovery of metals from electronic waste: A review. J Hazard Mater 158(2):228–256. http://www.sciencedirect.com/science/article/pii/S0304389408002161

    Article  CAS  Google Scholar 

  • EEA (2016) Circular economy in Europe Developing the knowledge base. Publication Office of the European Union, Luxembourg

    Google Scholar 

  • Gao W, Ariyama T, Ojima T, Meier A (2001) Energy impacts of recycling disassembly material in residential buildings. Energ Buildings 33(6):553–562

    Article  Google Scholar 

  • GRAEDEL, T. E. The Prospects for Urban Mining. Urban sustainability, The Bridge National Academy of Engineering and Society, v. 41 (1), p. 43–49, 2011. <https://www.nae.edu/File.aspx?id=43182&v=e31338e1

  • Haas W, Krausmann F, Wiedenhofer D, Heinz M (2015) How circular is the global economy? An assessment of material flows, waste production, and recycling in the European union and the world in 2005. J Ind Ecol 19(5):765–777

    Article  Google Scholar 

  • Ibrahim M (2016) Estimating the sustainability returns of recycling construction waste from building projects. Sustain Cities Soc 23:78–93

    Article  Google Scholar 

  • Johansson N, Krook J, Eklund M, Berglund B (2013) An integrated review of concepts and initiatives for mining the technosphere: towards a new taxonomy. J Clean Prod 55(55):35–44

    Article  Google Scholar 

  • Jones PT, Geysen D, Tielemans Y, Pontikes Y, Blanpain B, Mishra B, Apelian D (2012) Closing material loops: the enhanced landfill mining concept. JOM 64(7):743–744. https://doi.org/10.1007/s11837-012-0378-1

    Article  Google Scholar 

  • Kapur A, Graedel TE (2006) Copper mines above and below the ground. Environ Sci Technol 40(10):3135–3141

    Article  CAS  Google Scholar 

  • Kirchherr J, Piscicelli L, Bour R, Kostense-Smit E, Muller J, Huibrechtse-Truijens A, Hekkert M (2018) Barriers to the circular economy: evidence from the European Union (EU). Ecol Econ 150:264–272. https://doi.org/10.1016/j.ecolecon.2018.04.028

    Article  Google Scholar 

  • Kleemann F, Lederer J, Rechberger H, Fellner J (2017) GIS-based analysis of Vienna’s material stock in buildings. J Ind Ecol 21(2):368–380

    Article  Google Scholar 

  • Korhonen J, Honkasalo A, Seppälä J (2018) Circular economy: the concept and its limitations. Ecol Econ 143:37–46

    Article  Google Scholar 

  • Krausmann F, Gingrich S, Eisenmenger N, Erb KH, Haberl H, Fischer-Kowalski M (2009) Growth in global materials use, GDP and population during the 20th century. Ecol Econ 68(10):2696–2705

    Article  Google Scholar 

  • Krook J, Carlsson A, Eklund M, Frändegård P, Svensson N (2011) Urban mining: hibernating copper stocks in local power grids. J Clean Prod 19(9–10):1052–1056

    Article  Google Scholar 

  • Lederer J, Fellner J (2015) Evaluation and classification of anthropogenic resource stocks and flows – the case of Phosphorus and Zinc. In: International workshop “Mining the technosphere – drivers and barriers, challenges and opportunities”, pp 11–15. http://iwr.tuwien.ac.at/mining-the-technosphere

  • Macarthur E (2001) Towards the E-society: E-commerce, E-business, and E-government. International Federation for Information Processing, Kluwer Academic Publishers. https://doi.org/10.1007/b116400

  • Macarthur E (2012) Towards the circular economy. Ellen Macarthur Foundation, Isle of Wight, UK, v. 1.

    Google Scholar 

  • Mastrucci A, Marvuglia A, Leopold U, Benetto E (2017) Life cycle assessment of building stocks from urban to transnational scales: a review. Renew Sust Energ Rev 74:316–332

    Article  CAS  Google Scholar 

  • Mehta PK (2001) Reducing the Environmental Impact of Concrete. ACI Concrete International v. 23, p. 61–66

    Google Scholar 

  • Michelini G, moraes RN, Cunha RN, Costa JMH, Ometto AR (2017) From Linear to Circular Economy: PSS Conducting the Transition. Procedia CIRP, v. 64, p. 2–6

    Google Scholar 

  • Murray A, Skene K, Haynes K (2017) The circular economy: an interdisciplinary exploration of the concept and application in a global context. J Bus Ethics 140(3):369–380. Springer Netherlands

    Article  Google Scholar 

  • Ng WY, Chau CK (2015) New life of the building materials-recycle, reuse and recovery. Energy Procedia 75:2884–2891

    Article  Google Scholar 

  • Obernosterer R, Brunner PH (2001) Urban metal management the example of Lead. Water Air Soil Pollut Focus 1(3):241–253. https://doi.org/10.1023/A:1017520624823

    Article  CAS  Google Scholar 

  • Ongondo FO, Williams ID, Whitlock G (2015) Distinct urban mines: exploiting secondary resources in unique anthropogenic spaces. Waste Manag 45:4–9

    Article  CAS  Google Scholar 

  • Ortlepp R, Gruhler K, Georg Schiller G, Deilmann C (2015) The other “half of the city” – analysis of non-residential building stock and its materials. Proceedings: Smart and Sustainable Built Construction, South Africa, December, 2015.

    Google Scholar 

  • Pappu A, Saxena M, Asolekar SR (2007) Solid wastes generation in India and their recycling potential in building materials. Build Environ 42(6):2311–2320

    Article  Google Scholar 

  • Preston F (2012) A global redesign? Shaping the circular economy. Briefing paper. Chatham House, London, p 20. http://www.chathamhouse.org/sites/files/chathamhouse/public/Research/Energy,Environmentand Development/bp0312_preston.pdf

  • Rao A, Jha KN, Misra S (2007) Use of aggregates from recycled construction and demolition waste in concrete. Resour Conserv Recycl 50(1):71–81. http://www.sciencedirect.com/science/article/pii/S0921344906001315

    Article  Google Scholar 

  • Reck BK, Graedel TE (2012) Challenges in metal recycling. Science 337(6095):690–695

    Article  CAS  Google Scholar 

  • Reinhart CF, Davila CC (2016) Urban building energy modeling – A review of a nascent field. Building and Environment, v. 97, p. 196–202.

    Google Scholar 

  • Reyna JL, Chester MV (2015) The growth of urban building stock: unintended lock-in and embedded environmental effects. J Ind Ecol 19(4):524–537

    Article  Google Scholar 

  • Sauvé S, Bernard S, Sloan P (2016) Environmental sciences, sustainable development and circular economy: alternative concepts for trans-disciplinary research. Environ Dev 17:48–56. www.sciencedirect.com/science/article/pii/S2211464515300099

    Article  Google Scholar 

  • Stahel WR (2012) The business angle of a circular economy – higher competitiveness, higher resource security and material efficiency. The Product-Life Institute, STAHEL, W. R. The business angle of a circular economy – higher competitiveness, higher resource security and material efficiency. The Product-Life Institute, Geneva, v. 15.05.12.

    Google Scholar 

  • Stephan A, Athanassiadis A (2017) Corrigendum to “quantifying and mapping embodied environmental requirements of urban building stocks” [Building and environment 114 (2017) 187–202]. Build Environ 121:291–292

    Article  Google Scholar 

  • Tanikawa H, Fishman T, Okuoka K, Sugimoto K (2015) The weight of society over time and space: a comprehensive account of the construction material stock of Japan, 1945–2010. J Ind Ecol 19(5):778–791

    Article  Google Scholar 

  • Thormark C (2001) Conservation of energy and natural resources by recycling building waste. Resour Conserv Recycl 33(2):113–130

    Article  Google Scholar 

  • Tilche A, Galatola M (2008) The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective. Water Sci Technol 57(11):1683–1692. https://doi.org/10.2166/wst.2008.039

    Article  CAS  Google Scholar 

  • UNEP. United Nations Environment Programme (2012) Environment for the future we want. Popul Dev Rev 24:407. www.jstor.org/stable/2807995?origin=crossref

    Google Scholar 

  • UNEP. United Nations Environment Programme (2015) Land and natural resources conflict, renewable resources and conflict. UN: New York. https://www.un.org/en/events/environmentconflictday/pdf/GN_Renewable_Consultation.pdf

  • UN-HABITAT. United Nations Human Settlements Programme (2016) Urbanization and development emerging futures. World cities report 2016. UN Habitat, New York

    Google Scholar 

  • Vitale P, Arena N, Di Gregorio F, Arena U (2017) Life cycle assessment of the end-of-life phase of a residential building. Waste Manag 60:311–321

    Article  Google Scholar 

  • WRAP. (2012) “WRAP’s Vision for the UK Circular Economy to 2020”.

    Google Scholar 

  • Wu H, Wang J, Duan H (2016) An innovative approach to managing demolition waste via GIS (geographic information system): a case study in Shenzhen city, China. J Clean Prod 112:494–503. https://doi.org/10.1016/j.jclepro.2015.08.096

    Article  Google Scholar 

  • Zhao W, Leeftink RB, Rotter VS (2010) Evaluation of the economic feasibility for the recycling of construction and demolition waste in China—The case of Chongqing. Resour Conserv Recycl 54(6):377–389. www.sciencedirect.com/science/article/pii/S0921344909002055>

    Article  Google Scholar 

  • Zhu X (2014) GIS and urban mining. Resources 3(1):235–247. www.mdpi.com/2079-9276/3/1/235

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Bilotta .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bender, A.P., Bilotta, P. (2019). Circular Economy and Urban Mining: Resource Efficiency in the Construction Sector for Sustainable Cities. In: Leal Filho, W., Azul, A., Brandli, L., Özuyar, P., Wall, T. (eds) Sustainable Cities and Communities. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-71061-7_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71061-7_40-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71061-7

  • Online ISBN: 978-3-319-71061-7

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics