Skip to main content

Ecological Footprint: Pragmatic Approach to Understanding and Building Sustainable Cities

  • Living reference work entry
  • First Online:
  • 197 Accesses

Part of the book series: Encyclopedia of the UN Sustainable Development Goals ((ENUNSDG))

Synonym

Ecological impact

Definitions

Ecological footprint is an approach used to measure the impact of human activities on the natural environment (Van den Bergh and Verbruggen 1999; Wackernagel and Rees 1998). It is a common indicator of the quantity of natural environment resources needed to support human systems. These systems can range in specificity from individuals to whole economies (Hoekstra 2009; Wackernagel and Rees 1997). Users of ecological footprinting techniques emphasize that ecological footprint can be differentiated from other sustainability indicators in two important ways (Hoektra 2009). Firstly, it expresses the impact of humanity with a single unit and, secondly, it expresses human impact in relation to Earth’s carrying capacity (i.e., Earth’s ability to support life). Ecological footprint has been popularized due to concerns about Earth’s declining carrying capacity; the footprint proved to be an effective baseline to acknowledge and quantify the current impact...

This is a preview of subscription content, log in via an institution.

References

  • Agrawal M, Boland J, Filar JA (2005) The ecological footprint of South Australia. Rep Prep Off Sustain. Government of South Australia. Adelaide, Australia

    Google Scholar 

  • Daly HE (1990) Sustainable Development: From Concept and Theory to Operational Principles. Population and Development Review 16:25

    Article  Google Scholar 

  • Ding GKC (2008) Sustainable construction – the role of environmental assessment tools. J Environ Manag 86:451–464

    Article  Google Scholar 

  • Galli A, Wiedmann T, Ercin E, Knoblauch D, Ewing B, Giljum S (2012) Integrating ecological, carbon and water footprint into a “footprint family” of indicators: definition and role in tracking human pressure on the planet. Ecol Indic 16:100–112. https://doi.org/10.1016/j.ecolind.2011.06.017

    Article  Google Scholar 

  • Galli A, Lin D, Wackernagel M, Gressot M, Winkler S (2015) Humanity’s growing ecological footprint: sustainable development implications. Glob Footpr network SDR 1

    Google Scholar 

  • Galli A, Giampietro M, Goldfinger S, Lazarus E, Lin D, Saltelli A, Wackernagel M, Müller F (2016) Questioning the Ecological Footprint. Ecological Indicators 69:224–232

    Article  Google Scholar 

  • Girardet H (2004) Cities people planet. Liviable cities for a sustainable world.

    Google Scholar 

  • Glaeser EL, Kahn ME (2010) The greenness of cities: carbon dioxide emissions and urban development. J Urban Econ 67:404–418

    Article  Google Scholar 

  • Global Footprint Network, G (2018a) The ecological footprint: tracking human demand on nature. https://www.footprintnetwork.org/content/documents/Ecological_Footprint.pdf Accessed 16.10.18   

  • Global Footprint Network, G (2018b) Total biocapacity [WWW document]. Glob Footpr Netw Adv Sci Sustain. http://data.footprintnetwork.org/#/. Accessed 6.10.18

  • Habitat UN (2006) The state of the world’s cities report 2006/2007. Millenium Dev Goals urban Sustain. 30

    Google Scholar 

  • Han TT, Vale B, Vale R (2017) Sustainable transport: a comparison of ecological footprint and travel patterns in three cities in Vietnam, New Zealand and Finland. In: Sustainable building and built environments to mitigate climate change in the tropics. Springer, Cham, pp 71–89

    Chapter  Google Scholar 

  • Heinonen J, Säynäjoki A, Junnila S (2011) A longitudinal study on the carbon emissions of a new residential development. Sustainability 3:1170–1189

    Article  Google Scholar 

  • Herrero M, Wirsenius S, Henderson B, Rigolot C, Thornton P, Havlík P, De Boer I, Gerber PJ (2015) Livestock and the environment: what have we learned in the past decade? Annu Rev Environ Resour 40:177–202

    Article  Google Scholar 

  • Hoekstra AY (2009) Human appropriation of natural capital: a comparison of ecological footprint and water footprint analysis. Ecol Econ 68:1963–1974. https://doi.org/10.1016/j.ecolecon.2008.06.021

    Article  Google Scholar 

  • Hoekstra AY, Wiedmann TO (2014) Humanity’s unsustainable environmental footprint. Science (80–) 344:1114–1117

    Article  CAS  Google Scholar 

  • Holden E (2004) Ecological footprints and sustainable urban form. J Housing Built Environ 19:91–109

    Article  Google Scholar 

  • Holden E, Høyer KG (2005) The ecological footprints of fuels. Transp Res Part D Transp Environ 10:395–403

    Article  Google Scholar 

  • Hubacek K, Guan D, Barrett J, Wiedmann T (2009) Environmental implications of urbanization and lifestyle change in China: ecological and water footprints. J Clean Prod 17:1241–1248

    Article  Google Scholar 

  • Huijbregts MAJ, Hellweg S, Frischknecht R, Hungerbühler K, Hendriks AJ (2008) Ecological footprint accounting in the life cycle assessment of products. Ecol Econ 64:798–807

    Article  Google Scholar 

  • Jorgenson AK (2003) Consumption and environmental degradation: a cross-national analysis of the ecological footprint. Soc Probl 50:374–394

    Article  Google Scholar 

  • Jouaneau C, Dupuis M, Grunewald N, Ouellet-Plamondon C, Network GF (2016) Ecological footprint analysis of Canadian household consumption by building type and mode of occupation. Paper presented at Sustainable Built Environment (SBE) Regional Conference.June 15-17 2016. Zurich,Switzerland.

    Google Scholar 

  • Kenworthy JR (2006) The eco-city: ten key transport and planning dimensions for sustainable city development. Environ Urban 18:67–85

    Article  Google Scholar 

  • McLaren SJ (2010) Life Cycle Assessment (LCA) of food production and processing: an introduction. In: Environmental assessment and management in the food industry. Elsevier, pp 37–58

    Google Scholar 

  • Monfreda C, Wackernagel M, Deumling D (2004) Establishing national natural capital accounts based on detailed ecological footprint and biological capacity assessments. Land Use Policy 21:231–246

    Article  Google Scholar 

  • Moran DD, Wackernagel M, Kitzes JA, Goldfinger SH, Boutaud A (2008) Measuring sustainable development – nation by nation. Ecol Econ 64: 470–474

    Article  Google Scholar 

  • Muñiz I, Galindo A (2005) Urban form and the ecological footprint of commuting. The case of Barcelona. Ecol Econ 55:499–514

    Article  Google Scholar 

  • Newman P (2006) The environmental impact of cities. Environ Urban 18:275–295

    Article  Google Scholar 

  • Nonhebel S (2005) Renewable energy and food supply: will there be enough land? Renew Sust Energ Rev 9:191–201

    Article  Google Scholar 

  • Pimentel D, Herz M, Glickstein M, Zimmerman M, Allen R, Becker K, Evans J, Hussain B, Sarsfeld R, Grosfeld A (2002) Renewable energy: current and potential issues renewable energy technologies could, if developed and implemented, provide nearly 50% of US energy needs; this would require about 17% of US land resources. Bioscience 52:1111–1120

    Article  Google Scholar 

  • Rees WE (1992) Ecological footprints and appropriated carrying capacity: what urban economics leaves out. Environ Urban 4:121–130

    Article  Google Scholar 

  • Rees WE (1999) The built environment and the ecosphere: a global perspective. Build Res Inf 27:206–220

    Article  Google Scholar 

  • Rees W, Wackernagel M (1996) Urban ecological footprints: why cities cannot be sustainable – and why they are a key to sustainability. Environ Impact Assess Rev Elsevier 16(4–6):223–248

    Article  Google Scholar 

  • Ritchie H (2017) How much of the world’s land would we need in order to feed the global population with the average diet of a given country? Our World Data Yields L. Use Agric. Blog post accessed at https://ourworldindata.org/agricultural-land-by-global-diets on 16.10.18.

  • Ritchie H, Roser M (2018) Energy production & changing energy sources [WWW Document]. Publ online OurWorldInData.org

    Google Scholar 

  • Roy P, Nei D, Orikasa T, Xu Q, Okadome H, Nakamura N, Shiina T (2009) A review of life cycle assessment (LCA) on some food products. J Food Eng 90:1–10

    Article  Google Scholar 

  • Simmons C, Lewis K, Barrett J (2000) Two feet – two approaches: a component-based model of ecological footprinting. Ecol Econ 32:375–380

    Article  Google Scholar 

  • Sorrell S (2010) Energy, economic growth and environmental sustainability: five propositions. Sustainability 2:1784–1809

    Article  Google Scholar 

  • Stöglehner G (2003) Ecological footprint – a tool for assessing sustainable energy supplies. J Clean Prod 11:267–277

    Article  Google Scholar 

  • Szigeti C, Toth G, Szabo DR (2017) Decoupling–shifts in ecological footprint intensity of nations in the last decade. Ecol Indic 72:111–117

    Article  Google Scholar 

  • Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci 96:5995–6000

    Article  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. https://doi.org/10.1038/nature01014

    Article  CAS  Google Scholar 

  • Toth G, Szigeti C (2016) The historical ecological footprint: from over-population to over-consumption. Ecol Indic 60:283–291

    Article  Google Scholar 

  • United Nations Department of Economic and Social Affairs (2017) The impact of population momentum on future population growth. Population Division. New York. USA

    Google Scholar 

  • United Nations (2017) The sustainable development goals report 2017. Department of Economic and Social Affairs, United Nations. New York.USA

    Google Scholar 

  • Van den Bergh JCJM, Verbruggen H (1999) Spatial sustainability, trade and indicators: an evaluation of the ‘ecological footprint. Ecol Econ 29:61–72

    Article  Google Scholar 

  • Van Vuuren DP, Smeets EMW (2000) Ecological footprints of Benin, Bhutan, Costa Rica and the Netherlands. Ecol Econ 34:115–130

    Article  Google Scholar 

  • Wackernagel M (1994) Ecological footprint and appropriated carrying capacity: a tool for planning toward sustainability

    Google Scholar 

  • Wackernagel M, Onisto L, Bello P, Linares AC, Falfan ISL, Garcia JM, Guerrero AIS, Guerrero Ma GS (1999) National natural capital accounting with the ecological footprint concept. Ecological Economics 29 (3):375–390

    Article  Google Scholar 

  • Wackernagel M, Rees WE (1997) Perceptual and structural barriers to investing in natural capital: economics from an ecological footprint perspective. Ecol Econ 20:3–24. https://doi.org/10.1016/S0921-8009(96)00077-8

    Article  Google Scholar 

  • Wackernagel M, Rees W (1998) Our ecological footprint: reducing human impact on the earth. New Society Publishers, Gabriola Island

    Google Scholar 

  • Wei Y, Huang C, Lam PTI, Yuan Z (2015) Sustainable urban development: a review on urban carrying capacity assessment. Habitat Int 46:64–71

    Article  Google Scholar 

  • Wiedmann T, Barrett J (2010) A review of the ecological footprint indicator – perceptions and methods. Sustainability 2:1645–1693

    Article  Google Scholar 

  • World Energy Council (2016) World energy resources 2016. World Energy Council, London, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nana Bortsie-Aryee .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bortsie-Aryee, N., Gabriel, CA. (2019). Ecological Footprint: Pragmatic Approach to Understanding and Building Sustainable Cities. In: Leal Filho, W., Azul, A., Brandli, L., Özuyar, P., Wall, T. (eds) Sustainable Cities and Communities. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-71061-7_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71061-7_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71061-7

  • Online ISBN: 978-3-319-71061-7

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics