Skip to main content

Biobased Economy: Critical Foundation for Achieving Sustainable Development Goals

  • Living reference work entry
  • First Online:
Decent Work and Economic Growth

Synonyms

Bioeconomy

Definitions

The biobased economy concept is broadly defined here as a shift towards more sustainable production practices that utilize biological processes and/or biotechnology throughout the product supply chains. The prefix “biobased” indicates that organisms are the foundation of what is being produced. Ideally, the biobased economy should as far as possible replace production practices that require the use of fossil and mineral resources, with naturally occurring processes that do not deplete natural capital. Biomass from organisms is used as a feedstock to produce various valuable products. The biorefinery is central to the biobased economy allowing for the optimal utilization of the different chemical components extracted and processed from biomass.

The term “‘biobased economy” is also used to refer to an entire economy of multiple supply chains at national and or even regional scale. The word “‘economy” in the term empathizes the synergy and interaction...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Banasik A, Kanellopoulos A, Claassen GDH, Bloemhof-Ruwaard JM, van der Vorst JG (2017) Closing loops in agricultural supply chains using multi-objective optimization: a case study of an industrial mushroom supply chain. Int J Prod Econ 183:409–420

    Article  Google Scholar 

  • Bennich T, Belyazid S (2017) The route to sustainability – prospects and challenges of the bio-based economy. Sustainability 9(6):887

    Article  Google Scholar 

  • Bertine KK, Goldberg ED (1971) Fossil fuel combustion and the major sedimentary cycle. Science 173(3993):233–235

    Article  CAS  Google Scholar 

  • Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “top 10” revisited. Green Chem 12(4):539–554

    Article  CAS  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51(7):1412–1421

    Article  CAS  Google Scholar 

  • de Jong E, Jungmeier G (2015) Biorefinery concepts in comparison to petrochemical refineries. In: Industrial biorefineries & white biotechnology. Elsevier, New York, pp 3–33

    Chapter  Google Scholar 

  • De Meyer A, Cattrysse D, Rasinmäki J, Van Orshoven J (2014) Methods to optimise the design and management of biomass-for-bioenergy supply chains: a review. Renew Sust Energ Rev 31:657–670

    Article  Google Scholar 

  • EC (2011) Bio-based economy in Europe: state of play and future potential. European Commission. https://ec.europa.eu/research/consultations/bioeconomy/bio-based-economy-for-europe-part2.pdf

  • El-Chichakli B, von Braun J, Lang C, Barben D, Philp J (2016) Policy: five cornerstones of a global bioeconomy. Nature 535(7611):221

    Article  CAS  Google Scholar 

  • Fernando S, Adhikari S, Chandrapal C, Murali N (2006) Biorefineries: current status, challenges, and future direction. Energy Fuel 20(4):1727–1737

    Article  CAS  Google Scholar 

  • Fritsche UR, Iriarte L (2014) Sustainability criteria and indicators for the bio-based economy in Europe: state of discussion and way forward. Energies 7(11):6825–6836

    Article  Google Scholar 

  • Gold S, Seuring S (2011) Supply chain and logistics issues of bio-energy production. J Clean Prod 19(1):32–34

    Article  Google Scholar 

  • Govindan K, Soleimani H (2017) A review of reverse logistics and closed-loop supply chains: a journal of cleaner production focus. J Clean Prod 142(Part 1):371–384

    Article  Google Scholar 

  • Govindan K, Soleimani H, Kannan D (2015) Reverse logistics and closed-loop supply chain: a comprehensive review to explore the future. Eur J Oper Res 240:603–626

    Article  Google Scholar 

  • Hoskinson RL, Karlen DL, Birrell SJ, Radtke CW, Wilhelm WW (2007) Engineering, nutrient removal, and feedstock conversion evaluations of four corn Stover harvest scenarios. Biomass Bioenergy 31(2–3):126–136

    Article  CAS  Google Scholar 

  • Jiang Y, van der Werf E, van Ierland EC, Keesman KJ (2017) The potential role of waste biomass in the future urban electricity system. Biomass and bioenergy 107:182–190

    Article  Google Scholar 

  • Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64(2):137–145

    Article  CAS  Google Scholar 

  • Khor KS, Udin ZM (2012) Impact of reverse logistics product disposition towards business performance in Malaysian E&E companies. J Supply Chain Cust Relatsh Manag 1

    Google Scholar 

  • Langeveld H, Sanders J, Meeusen M (2012) The biobased economy: biofuels. Materials and chemicals in the post-oil era. Routledge, London

    Google Scholar 

  • MacArthur E, Zumwinkel K, Stuchtey M (2015) Growth within: a circular economy vision for a competitive Europe. Ellen MacArthur Foundation, Cowes

    Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46

    Article  CAS  Google Scholar 

  • Michels J, Wagemann K (2010) The German lignocellulose feedstock biorefinery project. Biofuels Bioprod Biorefin 4(3):263–267

    Article  CAS  Google Scholar 

  • Muñoz I, Flury K, Jungbluth N, Rigarlsford G, i Canals LM, King H (2014) Life cycle assessment of bio-based ethanol produced from different agricultural feedstocks. Int J Life Cycle Assess 19(1):109–119

    Article  Google Scholar 

  • Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci 109(31):12302–12308

    Article  CAS  Google Scholar 

  • Rentizelas AA, Tolis AJ, Tatsiopoulos IP (2009) Logistics issues of biomass: the storage problem and the multi-biomass supply chain. Renew Sust Energ Rev 13(4):887–894

    Article  Google Scholar 

  • Rood T, Muilwijk H, Westhoek H (2017) Food for the circular economy. PBL publication number: 2878. PBL Netherlands Environmental Assessment Agency., The Hague

    Google Scholar 

  • Staffas L, Gustavsson M, McCormick K (2013) Strategies and policies for the bioeconomy and bio-based economy: an analysis of official national approaches. Sustainability 5(6):2751–2769

    Article  Google Scholar 

  • Vink ET, Rabago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polymer Degradation and stability 80(3):403–419

    Article  CAS  Google Scholar 

  • Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L, Jones S (2004) Top value added chemicals from biomass. Volume 1-results of screening for potential candidates from sugars and synthesis gas. Department of Energy, Washington, DC

    Google Scholar 

  • Wik M, Pingali P, Brocai S (2008) Global agricultural performance: past trends and future prospects. World Bank, Washington, DC

    Google Scholar 

  • Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19(2):153–159

    Article  CAS  Google Scholar 

  • Zisopoulos FK, Moejes SN, Rossier-Miranda FJ, van der Goot AJ, Boom RM (2015) Exergetic comparison of food waste valorization in industrial bread production. Energy 82:640–649

    Article  Google Scholar 

  • Zisopoulos FK, Ramírez HAB, van der Goot AJ, Boom RM (2016) A resource efficiency assessment of the industrial mushroom production chain: the influence of data variability. J Clean Prod 126:394–408

    Article  Google Scholar 

  • Zisopoulos FK, Rossier-Miranda FJ, Van der Goot AJ, Boom RM (2017) The use of exergetic indicators in the food industry–a review. Crit Rev Food Sci Nutr 57(1):197–211

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alistair Beames .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Beames, A., Goedhart, J., Kanellopoulos, A. (2019). Biobased Economy: Critical Foundation for Achieving Sustainable Development Goals. In: Leal Filho, W., Azul, A., Brandli, L., Özuyar, P., Wall, T. (eds) Decent Work and Economic Growth. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-71058-7_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71058-7_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71058-7

  • Online ISBN: 978-3-319-71058-7

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics