Skip to main content

Energy Use and Climate Change: History and Foresight

  • Living reference work entry
  • First Online:
Affordable and Clean Energy

Synonyms

Appropriable technical potential; Energetic metabolism; Energy consumption; Global primary energy consumption; Human appropriation of net primary production (HANPP); Social metabolism; Total primary energy supply (TPES); World energy consumption

Definitions

An overview is given of physical energy unit definitions, climate change concepts, and standard institutional and academic energy terminology.

Physical Energy Units

The standard measure for an amount of energy is joule which equals the work done when a force of one newton (N) moves the point of its application a distance of 1 m in the direction of the force. One newton (N) gives to a mass of 1 kg an acceleration of 1 m per second. The amount of energy or work (J) over time is expressed in a unit of power or watt (W), which is equal to 1 J of work applied over 1 s. The rate of energy transfer per unit area is the energy flux density, expressed in watt per square meter. Energy is either kinetic (energy in motion such as...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allaby M (1998) A dictionary of ecology. Oxford University Press

    Google Scholar 

  • Archer CL, Jacobson MZ (2005) Evaluation of global wind power. J Geophys Res Atmos 110(D12):D12110

    Article  Google Scholar 

  • Ayres RU (1956) The Age of Fossil Fuels. In: Man’s Role in Changing the Face of the Earth. University of Chicago Press, Chicago, pp 367–381

    Google Scholar 

  • Beerling DJ (1999) Quantitative estimates of changes in marine and terrestrial primary productivity over the past 300 million years. Proc R Soc Lond B Biol Sci 266(1431):1821–1827

    Article  Google Scholar 

  • Bekker A, Holland HD (2012) Oxygen overshoot and recovery during the early Paleoproterozoic. Earth Planet Sci Lett 317–318:295–304

    Article  Google Scholar 

  • Boserup E (1965) The conditions of agricultural growth. The economics of agrarian change under population pressure. Allen & Unwin, London

    Google Scholar 

  • Brockway PE, Barrett JR, Foxon TJ, Steinberger JK (2014) Divergence of trends in US and UK aggregate exergy efficiencies 1960–2010. Environ Sci Technol 48(16):9874–9881

    Article  Google Scholar 

  • Butterfield NJ (2000) Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26(3):386–404

    Article  Google Scholar 

  • Canfield DE, Rosing MT, Bjerrum C (2006) Early anaerobic metabolisms. Philos Trans R Soc Lond B Biol Sci 361(1474):1819–1836

    Article  Google Scholar 

  • Capellán-Pérez I, de Castro C, Miguel González LJ (2019) Dynamic energy return on energy investment (EROI) and material requirements in scenarios of global transition to renewable energies. Energ Strat Rev 26:100399

    Article  Google Scholar 

  • Cozzi L, Wanner B, Donovan C, et al (2019) Offshore Wind Outlook 2019: World Energy Outlook Special Report. International Energy Agency

    Google Scholar 

  • Desing H, Widmer R, Beloin-Saint-Pierre D, et al (2019) Powering a Sustainable and Circular Economy—An Engineering Approach to Estimating Renewable Energy Potentials within Earth System Boundaries. Energies 12:4723. https://doi.org/10.3390/en12244723

  • Diemer A, Dierickx F (2020) Circular Economy, A new Paradigm For Europe? In: Diemer A, Nedelciu E, Schellens M, et al. (eds) Paradigms, Models, Scenarios and Practices for Strong Sustainability. Editions Oeconomia, Clermont-Ferrand, France, pp 161–179

    Google Scholar 

  • Farquhar J, Zerkle AL, Bekker A (2011) Geological constraints on the origin of oxygenic photosynthesis. Photosynth Res 107(1):11–36

    Article  Google Scholar 

  • Fink-Jensen J (2015) Total Population (1500-2000). IISH Data Collection

    Google Scholar 

  • Fischer-Kowalski M, Hüttler W (1998) Society’s metabolism.: the intellectual history of materials flow analysis, Part II, 1970–1998. J Ind Ecol 2(4):107–136

    Article  Google Scholar 

  • Fischer-Kowalski M, Krausmann F, Pallua I (2014) A sociometabolic reading of the Anthropocene: modes of subsistence, population size and human impact on Earth. Anthropocene Rev 1(1):8–33

    Article  Google Scholar 

  • GEA (2012) Global energy assessment – toward a sustainable future. Cambridge University Press, Cambridge, UK/New York and the International Institute for Applied Systems Analysis. Laxenburg, Austria

    Google Scholar 

  • Goldblatt C, Lenton TM, Watson AJ (2006) Bistability of atmospheric oxygen and the great oxidation. Nature 443(7112):683–686

    Article  Google Scholar 

  • Haas W, Krausmann F, Wiedenhofer D, Heinz M (2015) How circular is the global economy?: an assessment of material flows, waste production, and recycling in the European Union and the world in 2005. J Ind Ecol 19(5):765–777

    Article  Google Scholar 

  • Haberl H (2001) The energetic metabolism of societies: Part II: empirical examples. J Ind Ecol 5(2):71–88

    Article  Google Scholar 

  • Haberl H, Erb KH, Krausmann F, et al (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. PNAS 104:12942–12947. https://doi.org/10.1073/pnas.0704243104

  • Hall CAS, Powers R, Schoenberg W (2008) Peak oil, EROI, investments and the economy in an uncertain future. In: Pimentel D (ed) Biofuels, solar and wind as renewable energy systems. Springer Netherlands, Dordrecht, pp 109–132

    Chapter  Google Scholar 

  • Hall CAS, Lambert JG, Balogh SB (2014) EROI of different fuels and the implications for society. Energy Policy 64:141–152

    Article  Google Scholar 

  • Harris M (1997) Culture, people, nature: An introduction to general anthropology, 7th edn. Longman, New York

    Google Scholar 

  • Hislop H, Hill J (2011) Reinventing the wheel: A circular economy for resource security. Green Alliance, London

    Google Scholar 

  • Hoes OAC, Meijer LJJ, van der Ent RJ, van de Giesen NC (2017) Systematic high-resolution assessment of global hydropower potential. PLoS One 12(2):e0171844

    Article  Google Scholar 

  • IEA (2016) World energy balances. IEA World Energy Statistics and Balances (database) https://doi.org/10.1787/data-00512-en

  • IPCC (2019) Annex I: Glossary. In: van Diemen R (ed) Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In press

    Google Scholar 

  • International Energy Agency (2015) Key world energy statistics 2015. OECD/IEA, Paris

    Book  Google Scholar 

  • International Energy Agency (2019a) World Energy Balances 2019 Edition. International Energy Agency. http://wds.iea.org/wds/pdf/WORLDBAL_Documentation.pdf

  • International Energy Agency (2019b) World Energy Balances: Overview. International Energy Agency. https://webstore.iea.org/download/direct/2710?fileName=World_Energy_Balances_2019_Overview.pdf

  • Jacobsen T, Adams RM (1958) Salt and Silt in Ancient Mesopotamian Agriculture: Progressive changes in soil salinity and sedimentation contributed to the breakup of past civilizations. Science 128:1251–1258. https://doi.org/10.1126/science.128.3334.1251

  • Jacobson MZ, Delucchi MA (2011) Providing all global energy with wind, water, and solar power, Part I: technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 39(3):1154–1169

    Article  Google Scholar 

  • Kaplan JO, Krumhardt KM, Ellis EC, Ruddiman WF, Lemmen C, Goldewijk KK (2011) Holocene carbon emissions as a result of anthropogenic land cover change. The Holocene 21(5):775–791

    Article  Google Scholar 

  • Krausmann F, Schandl H, Sieferle RP (2008) Socio-ecological regime transitions in Austria and the United Kingdom. Ecol Econ 65(1):187–201

    Article  Google Scholar 

  • Lane N, Martin W (2010) The energetics of genome complexity. Nature 467(7318):929–934

    Article  Google Scholar 

  • Lee RB (1968) What hunters do for a living, or, how to make out on scarce resources. In: Lee RB, DeVore I (eds) Man in the hunter. Aldine Publishing Company, Chicago

    Google Scholar 

  • Lenton TM, Pichler P-P, Weisz H (2016) Revolutions in energy input and material cycling in Earth history and human history. Earth Syst Dynam 7(2):353–370

    Article  Google Scholar 

  • Mills B, Lenton TM, Watson AJ (2014) Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering. Proc Natl Acad Sci 111(25):9073–9078

    Article  Google Scholar 

  • Mitchell L, Brook E, Lee JE, Buizert C, Sowers T (2013) Constraints on the late holocene anthropogenic contribution to the atmospheric methane budget. Science 342(6161):964–966

    Article  Google Scholar 

  • Moriguchi Y (2007) Material flow indicators to measure progress toward a sound material-cycle society. J Mater Cycles Waste Manage 9(2):112–120

    Article  Google Scholar 

  • Mørk G, Barstow S, Kabuth A, Pontes M (2010) Assessing the Global Wave Energy Potential. Shanghai, China

    Google Scholar 

  • Murphy DJ, Hall CAS, Dale M, Cleveland C (2011) Order from Chaos: a preliminary protocol for determining the EROI of fuels. Sustainability 3(10):1888–1907

    Article  Google Scholar 

  • Nihous GC (2005) An order-of-magnitude estimate of ocean thermal energy conversion resources. J Energy Resour Technol 127(4):328–333

    Article  Google Scholar 

  • OECD (2015) Environment at a Glance 2015. OECD Publishing, Paris

    Google Scholar 

  • OECD (2016) Primary energy supply (indicator). OECD Data. https://doi.org/10.1787/1b33c15a-en

  • Perez M, Perez R (2015) A Fundamental Look At Supply Side Energy Reserves For The Planet. IEA-SHCP-Newsletter 62

    Google Scholar 

  • Porada P, Weber B, Elbert W, Pöschl U, Kleidon A (2013) Estimating global carbon uptake by lichens and bryophytes with a process-based model. Biogeosciences 10(11):6989–7033

    Article  Google Scholar 

  • Quéré CL, Andrew RM, Friedlingstein P, Sitch S, Hauck J, Pongratz J, … Zheng B (2018) Global carbon budget 2018. Earth Syst Sci Data 10(4):2141–2194

    Google Scholar 

  • Schellens M, Diemer A (2020) Natural resources conflict. In: Leal Filho W, Azul A, Brandli L, Özuyar P, Wall T (eds) Sustainable cities and communities. Encyclopedia of the UN sustainable development goals. Springer, Cham

    Google Scholar 

  • Sieferle RP (1997) Rückblick auf die Natur. Eine Geschichte des Menschen und seiner Umwelt. Luchterhand, München

    Google Scholar 

  • Sieferle RP (2010) Lehren aus der Vergangenheit: Expertise für das WBGU-Hauptgutachten “Welt im Wandel: Gesellschaftsvertrag für eine Große Transformation” (Materialien). WBGU, Berlin

    Google Scholar 

  • Simmons IG (2008) Global environmental history: 10,000 BC to AD 2000. Edinburgh University Press, Edinburgh

    Google Scholar 

  • Stefansson V (2005) World geothermal assessment. In: Proceedings World Geothermal Congress 2005, Antalya, Turkey, p 6

    Google Scholar 

  • Tainter J (1988) The collapse of complex societies. Cambridge University Press, Cambridge

    Google Scholar 

  • United Nations (2018) International Recommendations for Energy Statistics (IRES). United Nations Department of Economic and Social Affairs Statistics Division, New York

    Google Scholar 

  • Volk T (1998) Gaia’s body. Springer, New York

    Book  Google Scholar 

  • Wrangham RW, Jones JH, Laden G, Pilbeam D, Conklin-Brittain N (1999) The raw and the stolen. Cooking and the ecology of human origins. Curr Anthropol 40(5):567–594

    Article  Google Scholar 

  • Wrigley EA (2010) Energy and the English Industrial Revolution. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

This project has received funding from ERASMUS + Programme of the European Union (Jean Monnet Excellence Center on Sustainability, ERASME).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dierickx, F., Diemer, A. (2020). Energy Use and Climate Change: History and Foresight. In: Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T. (eds) Affordable and Clean Energy. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-71057-0_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71057-0_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71057-0

  • Online ISBN: 978-3-319-71057-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics