Skip to main content

Multidimensional Framework for Achieving Sustainable and Resilient Food Systems in Nigeria

  • Living reference work entry
  • First Online:
Handbook of Climate Change Resilience

Abstract

Africa faces the grand challenge of feeding a growing, more affluent population in the coming decades while reducing the environmental burden of agriculture. Approaches that integrate food security and environmental goals offer promise for achieving a more sustainable and resilient food system for the continent and for adapting to a changing climate. Here we outline a multidimensional framework to be applied to the case of staple crop production in Nigeria with the eventual intended purpose being to inform sustainable and resilient food security pathways for the country. This chapter begins by presenting a broad overview of global food security challenges and distant and local drivers of food production decision-making, with the focus of then turning toward the food security and sustainability issues facing sub-Saharan Africa and Nigeria. The chapter then introduces a novel international collaboration focusing on food security and sustainability in Nigeria – the Assessing Climate Resilient and Nutritious Crops (CRENUT) project – the primary aim of which is to link stakeholder involvement, technical expertise, and multiple types of information to achieve policy-relevant research outputs that can enhance science-based agricultural decision-making in Nigeria. This project will follow a set of five key steps to move from basic scientific discovery to its application through agricultural policy: (1) in-depth understanding of stakeholder priorities and goals; (2) an assessment of data needs, data availability, and options for data generation; (3) analysis to develop strategies to align multiple goals and to fully understand the potential co-benefits or trade-offs associated with a particular agricultural policy; (4) identification of policy mechanisms by which the desired food security and sustainability outcomes can be achieved; and (5) the transfer of this collective knowledge to inform science-based decision-making related to agriculture and food security. In doing so, this chapter present a universal approach that can be used to identify a host of desirable policy pathways which, if pursued, can promote the sustainable development of Nigeria’s agricultural sector and can realize co-benefits for nutrition, rural livelihoods, and climate change adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. FAO, Rome

    Google Scholar 

  • Babu SC, Blom S (2014) Capacity development for resilient food systems: issues, approaches, and knowledge gaps. IFPRI, Washington, DC

    Google Scholar 

  • Babu SC, Gyimah-Brempong K, Nwafor M, Edeh H (2014) Capacity assessment for achieving the agricultural transformation agenda in Nigeria. NSSP working paper 26. IFPRI, Washington, DC/Abuja

    Google Scholar 

  • Babu SC, Mavrotas G, Prasai N (2018) Integrating environmental considerations into the agricultural policy process: evidence from Nigeria. Environ Develop 25:111–125

    Article  Google Scholar 

  • Barrett CB, Carter MR (2013) The economics of poverty traps and persistent poverty: policy and empirical implications. J Develop Stud 49:976–990

    Article  Google Scholar 

  • Brauman K, Richter B, Postel S, Malsy M, Flörke M (2016) Water depletion: an improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Elementa 4:83

    Google Scholar 

  • Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nature Clim Change 4:287–291

    Article  Google Scholar 

  • Chand R, Prasanna PAL, Singh A (2011) Farm size and productivity: understanding the strengths of smallholders and improving their livelihoods. Econom Polit Weekly 46(Suppl rev agric):5–11

    Google Scholar 

  • Chapagain AK, Hoekstra AY, Savenije HHG (2006) Water saving through international trade of agricultural products. Hydrol Earth Syst Sci 10:455–468

    Article  Google Scholar 

  • Chiarelli DD, Davis KF, Rulli MC, D’Odorico P (2016) Climate change and large-scale land acquisitions in Africa: quantifying the future impact on acquired water resources. Adv Wat Resour 94:231–237

    Article  CAS  Google Scholar 

  • D’Odorico P, Rulli MC, Dell’Angelo J, Davis KF (2017) New frontiers of land and water commodification: socio-environmental controversies of large-scale land acquisitions. Land Develop Degrad 28:2234–2244

    Article  Google Scholar 

  • Dalin C, Wada Y, Kastner T, Puma MJ (2017) Groundwater depletion embedded in international food trade. Nature 543:700–704

    Article  CAS  Google Scholar 

  • Davis KF, D'Odorico P (2015) Livestock intensification and the influence of dietary change: a calorie-based assessment of competition for crop production. Sci Tot Environ 538:817–823

    Article  CAS  Google Scholar 

  • Davis KF, D'Odorico P, Rulli MC (2014a) Moderating diets to feed the future. Earth’s Future 2:559–565

    Article  Google Scholar 

  • Davis KF, D'Odorico P, Rulli MC (2014b) Land grabbing: a preliminary quantification of economic impacts on rural livelihoods. Popul Environ 36:180–192

    Article  Google Scholar 

  • Davis KF, Yu KL, Herrero M, Havlik P, Carr JA, D'Odorico P (2015a) Historical trade-offs of livestock’s environmental impacts. Environ Res Lett 10:125013

    Article  Google Scholar 

  • Davis KF, Rulli MC, D'Odorico P (2015b) The global land rush and climate change. Earth’s Future 3:298–311

    Article  Google Scholar 

  • Davis KF, Yu K, Rulli MC, Pichdara L, D’Odorico P (2015c) Accelerated deforestation driven by large-scale land acquisitions in Cambodia. Nat Geosci 8:772–775

    Article  CAS  Google Scholar 

  • Davis KF, Gephart JA, Emery K, Leach A, Galloway JN, D’Odorico P (2016) Meeting future food demand with current agricultural resources. Glob Environ Change 39:125–132

    Article  Google Scholar 

  • Davis KF, Rulli MC, Seveso A, D’Odorico P (2017a) Increased food production and reduced water use through optimized crop distribution. Nat Geosci 10:919–924

    Article  CAS  Google Scholar 

  • Davis KF, Rulli MC, Garrassino F, Chiarelli D, Seveso A, D'Odorico P (2017b) Water limits to closing yield gaps. Adv Water Resour 99:67–75

    Article  Google Scholar 

  • Davis K, Seveso A, Rulli M, D’Odorico P (2017c) Water savings of crop redistribution in the United States. Water 9:83

    Article  Google Scholar 

  • De Schutter O (2011) The green rush: the global race for farmland and the rights of land users. Harvard Intl Law J 52:503–559

    Google Scholar 

  • DeFries RS, Rudel T, Uriarte M, Hansen M (2010) Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat Geosci 3:178–181

    Article  CAS  Google Scholar 

  • DeFries R, Fanzo J, Remans R, Palm C, Wood S, Anderman TL (2015) Metrics for land-scarce agriculture. Science 349:238–240

    Article  CAS  Google Scholar 

  • DeFries R, Mondal P, Singh D, Agrawal I, Fanzo J, Remans R, Wood S (2016) Synergies and trade-offs for sustainable agriculture: nutritional yields and climate-resilience for cereal crops in Central India. Glob Food Secur 11:44–53

    Article  Google Scholar 

  • Deininger K (2013) The global land rush. In: Barrett CB (ed) Food security and sociopolitical stability. Oxford University Press, Oxford, pp 95–119

    Chapter  Google Scholar 

  • Dell’Angelo J, D’Odorico P, Rulli MC (2017) Threats to sustainable development posed by land and water grabbing. Curr Opin Environ Sust 26-27:120–128

    Article  Google Scholar 

  • Dercon S, Christiaensen L (2011) Consumption risk, technology adoption and poverty traps: evidence from Ethiopia. J Develop Econom 96:159–173

    Article  Google Scholar 

  • D'Odorico P, Laio F, Ridolfi L (2010) Does globalization of water reduce societal resilience to drought? Geophys Res Lett 37:L13403

    Article  Google Scholar 

  • D'Odorico P, Carr JA, Laio F, Ridolfi L, Vandoni S (2014) Feeding humanity through global food trade. Earth’s Future 2:458–469

    Article  Google Scholar 

  • D'Odorico P, Davis KF, Rosa L, Carr JA, Chiarelli DD, Dell'Angelo J, Gephart J, MacDonald GK, Seekell DA, Suweis S, Rulli MC (2018) The global food-energy-water nexus. Rev Geophys (in press)

    Google Scholar 

  • Eshel G, Shepon A, Makov T, Milo R (2014) Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States. Proc Natl Acad Sci USA 111:11996–12001

    Article  CAS  Google Scholar 

  • Federal Ministry of Agriculture and Rural Development (2016) The green alternative: the agricultural promotion policy 2016–2020. Federal Ministry of Agriculture and Rural Development, Federal Republic of Nigeria, Abuja

    Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2009) Global agriculture towards 2050. FAO, Rome

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (2017) FAOSTAT database. FAO, Rome http://www.fao.org/faostat/en/#home

  • Food and Agriculture Organization of the United Nations, International Fund for Agricultural Development, United Nations Children's Fund, World Food Programme, World Health Organization (2017) The state of food security and nutrition in the World 2017. Building resilience for peace and food security. FAO, Rome

    Google Scholar 

  • Food and Agriculture Organization of the United Nations, International Fund for Agricultural Development, World Food Programme (2015) The state of food insecurity in the world 2015. Meeting the 2015 international hunger targets: taking stock of uneven progress. FAO, Rome

    Google Scholar 

  • Foster V, Pushak N (2011) Nigeria’s infrastructure: a continental perspective. Policy research working paper 5686. The World Bank, Washington, DC

    Google Scholar 

  • Galli A, Wackernagel M, Iha K, Lazarus E (2014) Ecological footprint: implications for biodiversity. Biol Conserv 173:121–132

    Article  Google Scholar 

  • Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG, Bloomer P, Burlingame B, Dawkins M, Dolan L, Fraser D, Herrero M, Hoffmann I, Smith P, Thornton PK, Toulmin C, Vermeulen SJ, HCJ G (2013) Sustainable intensification in agriculture: premises and policies. Science 341:33–34

    Article  CAS  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  Google Scholar 

  • Gustavsson J, Cederberg C, Sonesson U, van Otterdijk R, Meybeck A (2011) Global food losses and food waste: extent, causes and prevention. FAO, Gotherburg/Rome

    Google Scholar 

  • Herrero M, Havlik P, Valin H, Notenbaert A, Rufino MC, Thornton PK, Blummel M, Weiss F, Grace D, Obersteiner M (2013) Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc Natl Acad Sci USA 110:20888–20893

    Article  CAS  Google Scholar 

  • Herrero M, Thornton PK, Power B, Bogard JR, Remans R, Fritz S, Gerber JS, Nelson G, See L, Waha K, Watson RA, West PC, Samberg LH, van de Steeg J, Stephenson E, van Wijk M, Havlík P (2017) Farming and the geography of nutrient production for human use: a transdisciplinary analysis. Lancet Plan Health 1:e33–e44

    Article  Google Scholar 

  • Hoekstra AY, Mekonnen MM (2012) The water footprint of humanity. Proc Natl Acad Sci USA 109:3232–3237

    Article  Google Scholar 

  • Hoekstra AY, Wiedmann TO (2014) Humanity’s unsustainable environmental footprint. Science 344:1114–1117

    Article  CAS  Google Scholar 

  • Hoekstra AY, Mekonnen MM, Chapagain AK, Mathews RE, Richter BD (2012) Global monthly water scarcity: blue water footprints versus blue water availability. PLoS One 7:e32688

    Article  CAS  Google Scholar 

  • Jägermeyr J, Gerten D, Schaphoff S, Heinke J, Lucht W, Rockstrom J (2016) Integrated crop water management might sustainably halve the global food gap. Environ Res Lett 11:025002

    Article  CAS  Google Scholar 

  • Kastner T, Rivas MJI, Koch W, Nonhebel S (2012) Global changes in diets and the consequences for land requirements for food. Proc Natl Acad Sci USA 109:6868–6872

    Article  Google Scholar 

  • Kummu M, de Moel H, Porkka M, Siebert S, Varis O, Ward PJ (2012) Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci Tot Environ 438:477–489

    Article  CAS  Google Scholar 

  • Larson DF, Otsuka K, Matsumoto T, Kilic T (2012) Should African rural development strategies depend on smallholder farms? An exploration of the inverse productivity hypothesis. The World Bank, Washington, DC

    Book  Google Scholar 

  • Leach AM, Galloway JN, Bleeker A, Erisman JW, Kohn R, Kitzes J (2012) A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environ Develop 1:40–66

    Article  Google Scholar 

  • Leach AM, Emery KA, Davis KF, Gephart JA, Carr JA, Pace ML, D’Odorico P, Galloway JN (2016) Environmental impact food labels combining carbon, nitrogen, and water footprints. Food Policy 61:213–223

    Article  Google Scholar 

  • Lenzen M, Moran D, Kanemoto K, Foran B, Lobefaro L, Geschke A (2012) International trade drives biodiversity threats in developing nations. Nature 486:109–112

    Article  CAS  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    Article  CAS  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620

    Article  CAS  Google Scholar 

  • MacDonald GK, Brauman KA, Sun S, Carlson KM, Cassidy ES, Gerber JS, West PC (2015) Rethinking agricultural trade relationships in an era of globalization. Bioscience 65:275–289

    Article  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2010) The green, blue and grey water footprint of crops and derived crop products, Value of water research report series no. 47. UNESCO-IHE, Delft

    Google Scholar 

  • Mekonnen MM, Hoekstra AY (2012) A global assessment of the water footprint of farm animal products. Ecosystems 15:401–415

    Article  CAS  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2016) Four billion people facing severe water scarcity. Sci Adv 2:e1500323

    Article  CAS  Google Scholar 

  • Ministry of Budget and National Planning (2016) National policy on food and nutrition in Nigeria. Ministry of Budget and National Planning. Federal Republic of Nigeria, Abuja

    Google Scholar 

  • Mitter H, Heumesser C, Schmid E (2015) Spatial modeling of robust crop production portfolios to assess agricultural vulnerability and adaptation to climate change. Land Use Policy 46:75–90

    Article  Google Scholar 

  • Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490:254–257

    Article  CAS  Google Scholar 

  • Mueller ND, West PC, Gerber JS, MacDonald GK, Polasky S, Foley JA (2014) A tradeoff frontier for global nitrogen use and cereal production. Environ Res Lett 9:054002

    Article  CAS  Google Scholar 

  • Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey ADB, Bloom AJ, Carlisle E, Dietterich LH, Fitzgerald G, Hasegawa T, Holbrook NM, Nelson RL, Ottman MJ, Raboy V, Sakai H, Sartor KA, Schwartz J, Seneweera S, Tausz M, Usui Y (2014) Increasing CO2 threatens human nutrition. Nature 510:139–142

    Article  CAS  Google Scholar 

  • National Bureau of Statistics (2018) Unemployment rate. National Bureau of Statistics, Federal Republic of Nigeria, Abuja

    Google Scholar 

  • Oguntoya EB, Akinyele IO (eds) (1995) Nutrient composition of commonly eaten foods in Nigeria – raw, processed, and prepared. Food Basket Foundation International, Ibadan

    Google Scholar 

  • Olayide OE, Tetteh IK, Popoola L (2016) Differential impacts of rainfall and irrigation on agricultural production in Nigeria: any lessons for climate-smart agriculture? Agric Wat Manag 178:30–36

    Article  Google Scholar 

  • Organisation for Economic Co-operation and Development, FAO (2017) Agricultural outlook 2017–2026. FAO, Rome

    Google Scholar 

  • Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci USA 109:12302–12308

    Article  Google Scholar 

  • Pingali PL (2016) The hunger metrics mirage: There's been less progress on hunger reduction than it appears. Proc Natl Acad Sci USA 113:4880–4883

    Article  CAS  Google Scholar 

  • Postel SL, Daily GC, Ehrlich PR (1996) Human appropriation of renewable fresh water. Science 271:785–788

    Article  CAS  Google Scholar 

  • Pradhan P, Fischer G, van Velthuizen H, Reusser DE, Kropp JP (2015) Closing yield gaps: how sustainable can we be? PLoS One 10:e0129487

    Article  CAS  Google Scholar 

  • Puma MJ, Bose S, Chon SY, Cook BI (2015) Assessing the evolving fragility of the global food system. Environ Res Lett 10:024007

    Article  Google Scholar 

  • Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob Biogeochem Cyc 22:GB1003

    Article  CAS  Google Scholar 

  • Rao N, Poblete-Cazenave M, Bhalerao R, Davis KF, Parkinson S (n.d.) Food grains, energy demand and GHG emissions in India (in review)

    Google Scholar 

  • Ray DK, Foley JA (2013) Increasing global crop harvest frequency: recent trends and future directions. Environ Res Lett 8:044041

    Article  Google Scholar 

  • Ray DK, Gerber JS, MacDonald GK, West PC (2015) Climate variation explains a third of global crop yield variability. Nat Commun 6:5989

    Article  CAS  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475

    Article  CAS  Google Scholar 

  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N, Neumann K, Piontek F, Pugh TAM, Schmid E, Stehfest E, Yang H, Jones JW (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci USA 111:3268–3273

    Article  CAS  Google Scholar 

  • Rulli MC, D'Odorico P (2013) The water footprint of land grabbing. Geophys Res Lett 40:6130–6135

    Article  Google Scholar 

  • Rulli MC, D'Odorico P (2014) Food appropriation through large scale land acquisitions. Environ Res Lett 9:064030

    Article  Google Scholar 

  • Rulli MC, Saviori A, D'Odorico P (2013) Global land and water grabbing. Proc Natl Acad Sci USA 110:892–897

    Article  Google Scholar 

  • Rulli MC, Bellomi D, Cazzoli A, De Carolis G, D’Odorico P (2016) The water-land-food nexus of first-generation biofuels. Sci Rep 6:22521

    Article  CAS  Google Scholar 

  • Samberg LH, Gerber JS, Ramankutty N, Herrero M, West PC (2016) Subnational distribution of average farm size and smallholder contributions to global food production. Environ Res Lett 11:124010

    Article  Google Scholar 

  • Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci USA 106:203–208

    Article  Google Scholar 

  • Steffen W, Richardson K, Rockstrom J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sorlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:1259855

    Article  CAS  Google Scholar 

  • Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Hann C (2006) Livestock’s long shadow: environmental issues and options. FAO, Rome

    Google Scholar 

  • Stuart D, Schewe RL, McDermott M (2014) Reducing nitrogen fertilizer application as a climate change mitigation strategy: understanding farmer decision-making and potential barriers to change in the US. Land Use Pol 36:210–218

    Article  Google Scholar 

  • Suweis S, Rinaldo A, Maritan A, D'Odorico P (2013) Water-controlled wealth of nations. Proc Natl Acad Sci USA 110:4230–4233

    Article  Google Scholar 

  • Suweis S, Carr JA, Maritan A, Rinaldo A, D'Odorico P (2015) Resilience and reactivity of global food security. Proc Natl Acad Sci U S A 112:6902–6907

    Article  CAS  Google Scholar 

  • Thornton PK (2010) Livestock production: recent trends, future prospects. Phil Trans Roy Soc B 365:2853–2867

    Article  Google Scholar 

  • Tilman D, Clark M (2014) Global diets link environmental sustainability and human health. Nature 505:518–522

    Article  CAS  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264

    Article  Google Scholar 

  • UN-DESA (2015) World population prospects: the 2015 revision. UN, New York

    Google Scholar 

  • United States Department of Agriculture (2018) USDA food composition database. USDA, Washington, DC https://ndb.nal.usda.gov/ndb/

    Google Scholar 

  • Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J (2009) The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ 43:604–618

    Article  CAS  Google Scholar 

  • van Ittersum MK, van Bussel LGJ, Wolf J, Grassini P, van Wart J, Guilpart N, Claessens L, de Groot H, Wiebe K, Mason-D’Croz D, Yang H, Boogaard H, van Oort PAJ, van Loon MP, Saito K, Adimo O, Adjei-Nsiah S, Agali A, Bala A, Chikowo R, Kaizzi K, Kouressy M, Makoi JHJR, Ouattara K, Tesfaye K, Cassman KG (2016) Can sub-Saharan Africa feed itself? Proc Natl Acad Sci USA 113:14964–14969

    Article  CAS  Google Scholar 

  • Veldkamp TIE, Wada Y, Aerts JCJH, Ward PJ (2016) Towards a global water scarcity risk assessment framework: incorporation of probability distributions and hydro-climatic variability. Environ Res Lett 11:024006

    Article  CAS  Google Scholar 

  • Vermeulen SJ, Campbell BM, Ingram JSI (2012) Climate change and food systems. Ann Rev Environ Res 37:195–222

    Article  Google Scholar 

  • von Braun J, Meinzen-Dick R (2009) “Land grabbing” by foreign investors in developing countries: risks and opportunities. IFPRI, Washington, DC

    Google Scholar 

  • Wackernagel M, Schulz NB, Deumling D, Linares AC, Jenkins M, Kapos V, Monfreda C, Loh J, Myers N, Norgaard R, Randers J (2002) Tracking the ecological overshoot of the human economy. Proc Natl Acad Sci USA 99:9266–9271

    Article  CAS  Google Scholar 

  • Wada Y, Gleeson T, Esnault L (2014) Wedge approach to water stress. Nat Geosci 7:615–617

    Article  CAS  Google Scholar 

  • Weinzettel J, Hertwich EG, Peters GP, Steen-Olsen K, Galli A (2013) Affluence drives the global displacement of land use. Glob Environ Change 23:433–438

    Article  Google Scholar 

  • West PC, Gerber JS, Engstrom PM, Mueller ND, Brauman KA, Carlson KM, Cassidy ES, Johnston M, MacDonald GK, Ray DK, Siebert S (2014) Leverage points for improving global food security and the environment. Science 345:325–328

    Article  CAS  Google Scholar 

  • Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341:508–513

    Article  CAS  Google Scholar 

  • Wood SA, Smith MR, Fanzo J, Remans R, DeFries RS (2018) Trade and the equitability of global food nutrient distribution. Nature Sust 1:34–37

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle Frankel Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Davis, K.F., Olayide, O.E. (2018). Multidimensional Framework for Achieving Sustainable and Resilient Food Systems in Nigeria. In: Leal Filho, W. (eds) Handbook of Climate Change Resilience. Springer, Cham. https://doi.org/10.1007/978-3-319-71025-9_115-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71025-9_115-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71025-9

  • Online ISBN: 978-3-319-71025-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics