Skip to main content

Geometric and Aesthetic Concepts Based on Pentagonal Structures

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of the Mathematics of the Arts and Sciences

Abstract

The relationship between geometry and art will be examined using the example of pentagonal structures. The work of contemporary Dutch artist Gerard Caris is based on those pentagonal structures. He calls his art work Pentagonism and questions how art creations and design processes can rely on strong, geometric, structural thinking. Pentagonal structures in plane as well as in space will be analyzed from a geometrical point of view and compared to corresponding art approaches. A review of geometric research on tessellations will be followed by a discussion on previous attempts to tile the Pentagrid with regular pentagons. The fundamental role of the Pentagrid and derivable Kite-Dart-Grid in Caris’ art design processes will also be explained. A step into the three-dimensional space leads to the dodecahedron and derived rhombohedra configurations for tessellations, or packings, in space. The geometric background refers to fundamental works by Plato, Euclid, Dürer, and Kepler as well as recent research results. The investigation will end with a discussion of the aesthetic categories of redundancy and innovation, their application to art evaluation and the differentiation of geometry and art. The example of Caris’ art, which concentrates on the regular pentagon and the spatial counterpart dodecahedron, points out the possibilities of aesthetic expressions on the basis of geometric structures. Art enables the exploration of those structures in a playful and self-explanatory way and often precedes scientific research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bense M (1965) Aesthetica. Einführung in die neue Ästhetik. Agis, Baden-Baden, 2nd expanded edn 1982

    Google Scholar 

  • Bill M (1949) Die mathematische Denkweise in der Kunst unserer Zeit. Werk 36, 3, Winterthur. English version: The mathematical way of thinking in the visual art of our time. In: Emmer M (ed) (1993) The visual mind: art and mathematics. MIT Press, Cambridge, pp 5–9

    Google Scholar 

  • Bill M (1965) Structure as art? Art as structure? In: Kepes G (ed) Structure in art and in science. Braziller, New York, pp 150–151

    Google Scholar 

  • Birkhoff GD (1933) Aesthetic measure. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Bourbaki N (1948) Éléments de mathématique. Paris 1939 ff, L’Architecture des Mathématiques

    Google Scholar 

  • Caris G (2018) Pentagonism. http://www.gerardcaris.com. Accessed 10 Oct 2018

  • Conway JH, Lagarias JC (1990) Tiling with polyominoes and combinatorial group theory. J Combin Theory Ser A 53:183–208. Figures available https://commons.wikimedia.org/wiki/File:Penrose_vertex_figures.svg. Accessed 10 Oct 2018

    Article  MathSciNet  Google Scholar 

  • Coxeter HSM (1951) Extreme forms. Can J Math 3:391–441. https://doi.org/10.4153/CJM-1951-045-8

    Article  MathSciNet  MATH  Google Scholar 

  • Dürer A (1525) Underweysung der Messung, mit dem Zirckel und Richtscheyt, in Linien, Ebenen und gantzen corporen. Nürnberg, p 66–69. Online Edition: digital.slub-dresden.de/werkansicht/dlf/17139. Accessed 10 Oct 2018

    Google Scholar 

  • Dyskin A, Estrin Y, Kanel-Belov A, Pasternak E (2003) Topological interlocking of platonic solids: a way to new materials and structures. Philos Mag Lett 83(3):197–203

    Article  Google Scholar 

  • El-Said I, Parman A (1976) Geometric concepts in Islamic art. World of Islam Festival Publishing Company Ltd, London, p 82ff

    Google Scholar 

  • Estrin Y, Dyskin A, Pasternak E (2011) Topological interlocking as a material design concept. Mater Sci Eng C 31(6):1189–1194

    Article  Google Scholar 

  • Euclid (300 BC) Elements Book XIII. English Version by David E. Joyce, 1996. https://mathcs.clarku.edu/~djoyce/java/elements/bookXIII/bookXIII.html. Accessed 11 Oct 2018

  • Ghyka MC (1977) The geometry of art and life, 2nd edn. Dover, New York

    MATH  Google Scholar 

  • Gianetti C (2004) Cybernetic aesthetics and communication. Media Art Net. http://www.medienkunstnetz.de/themes/aesthetics_of_the_digital/cybernetic_aesthetics. Accessed 14 Nov 2018

  • Groß D (2007) Planet “Goldener Diamant”. In: Leopold C (ed) Geometrische Strukturen. Technische Universität Kaiserslautern, Kaiserslautern, pp 28–33

    Google Scholar 

  • Grünbaum B, Shephard GC (1987) Tilings and patterns. W. H. Freeman, New York, pp 537–547

    MATH  Google Scholar 

  • Hecker Z (2018.) http://www.zvihecker.com/projects/ramot_housing-113-1.html and corrections, sent by email. Accessed 27 Oct 2018

  • Hegel GWF (1835) Vorlesungen über die Aesthetik. In: Hotho HG (ed) Duncker & Humblot, Berlin, p CXVIII

    Google Scholar 

  • Jansen G, Weibel P (eds) (2007) Gerard Caris. Pentagonismus/Pentagonism. Walther König, Köln

    Google Scholar 

  • Kanel-Belov A, Dyskin A, Estrin Y, Pasternak E, Ivanov-Pogodaev I (2008) Interlocking of convex polyhedra: towards a geometric theory of fragmented solids. Mosc Math J 10(2):337–342. (ArXiv08125089 Math)

    Article  MathSciNet  Google Scholar 

  • Kant I (1783) Prolegomena zu einer jeden künftigen Metaphysik, die als Wissenschaft wird auftreten können. Johann Friedrich Hartknoch, Riga. http://www.uni-potsdam.de/u/philosophie/texte/prolegom/!start.htm

  • Kepler J (1619) Harmonices Mundi. Lincii Austriae, Linz. Online Edition https://archive.org/details/ioanniskepplerih00kepl. Accessed 10 Oct 2018

    Google Scholar 

  • Kuperberg G, Kuperberg W (1990) Double-lattice packings of convex bodies in the plane. J Discrete Comput Geom 5:389–397. https://doi.org/10.1007/BF02187800

    Article  MathSciNet  MATH  Google Scholar 

  • Leopold C (2011) Prolegomena zu einer geometrischen Ästhetik. In: Kürpig F (ed) Ästhetische Geometrie – Geometrische Ästhetik. Shaker, Aachen, pp 61–65

    Google Scholar 

  • Leopold C (2012) Strukturelles Denken als Methode. In: Warmburg J, Leopold C (eds) Strukturelle Architektur. Zur Aktualität eines Denkens zwischen Technik und Ästhetik. Transcript, Bielefeld, pp 9–29

    Google Scholar 

  • Leopold C (2016) Geometry and aesthetics of pentagonal structures in the art of Gerard Caris. In: Torrence E et al (eds) Proceedings bridges Finland. Tessellations Publishing, Phoenix, pp 187–194

    Google Scholar 

  • Leopold C (2018) Pentagonal structures as impulse for art. In: Emmer M, Abate M (eds) Imagine Math 6. Between culture and mathematics. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-93949-0

    Chapter  MATH  Google Scholar 

  • MacMahon MPA (1921) New mathematical pastimes. University Press, Cambridge, p 101

    MATH  Google Scholar 

  • Miyazaki K (1986) An adventure in multidimensional space: the art and geometry of polygons, polyhedra, and polytopes. Wiley, New York

    MATH  Google Scholar 

  • Moles AA (1966) Information theory and esthetic perception. Urbana, University of Illinois Press. French original 1958

    Google Scholar 

  • Nake F (2012) Information aesthetics: an heroic experiment. J Math Arts 6(2–3):65–75. https://doi.org/10.1080/17513472.2012.679458

    Article  MathSciNet  Google Scholar 

  • Plato (360 BC) Timaeus. Translated by Jowett B. Online Edition https://www.ellopos.net/elpenor/physis/plato-timaeus. Accessed 12 Oct 2018

  • Pöppe C (2015) Unordentliche Fünfeckspflasterungen. Spektrum der Wissenschaft 11/2015, pp 62–67. https://commons.wikimedia.org/wiki/File:PentagonTilings15.svg. Accessed 12 Oct 2018

  • Rao M (2017) Exhaustive search of convex pentagons which tile the plane. Manuscript: 16, Bibcode: 2017arXiv170800274R. https://perso.ens-lyon.fr/michael.rao/publi/penta.pdf. Accessed 10 Oct 2018

  • Shannon CE (1948) A mathematical theory of communications. Bell Tech J 27:379–423; 623–656

    Article  MathSciNet  Google Scholar 

  • Valéry P (1895) Introduction à la méthode de Léonard de Vinci. La Nouvelle Revue Française, Paris

    Google Scholar 

  • van de Craats J (2007) Rhombohedra in the work of Gerard Caris. In: Jansen G, Weibel P (eds) Gerard Caris. Pentagonismus/Pentagonism. Walther König, Köln, pp 44–48

    Google Scholar 

  • Viana V (2018a) From solid to plane tessellations, and back. Nexus Netw J. 20:741–768 https://doi.org/10.1007/s00004-018-0389-5

  • Viana V (2018b) Topological interlocking of convex regular Polyhedra. In: Leopold C, Robeller C, Weber U (eds) RCA 2018. Research culture in architecture x international conference on cross-disciplinary collaboration. Conference book. Fatuk – Faculty of Architecture, Technische Universität Kaiserslautern, 2018, pp 254–257

    Google Scholar 

  • Walther E (2004) Philosoph in technischer Zeit – Stuttgarter Engagement. Interview mit Elisabeth Walther, Teil 2. In: Büscher B, von Herrmann H-G, Hoffmann C (eds) Ästhetik als Programm. Max Bense/Daten und Streuungen. Diaphanes, Berlin, pp 62–73, translated by Cornelie Leopold

    Google Scholar 

  • Weisstein EW “Dual Tessellation”. From MathWorld – a Wolfram web resource. http://mathworld.wolfram.com/DualTessellation.html. According Williams R (1979) The geometrical foundation of natural structure: a source book of design. Dover, New York, p 37. Accessed 10 Oct 2018

Download references

Acknowledgements

Many thanks to the artist Gerard Caris for the opportunity to visit him in his atelier, showing and explaining his work to me, and allowing me to get an inside view of his creation processes. The images of his works of art in the figures here are used with his kind permission, and they are managed and supported by VG Bild-Kunst, Bonn. I am grateful to Margriet Caris for helping me with all of my questions and requests.

Thank you to Zvi Hecker, who agreed to allow the use of his drawings and photos of Ramot Polin housing project to explain his design background.

Finally, many thanks to Vera Viana for her discussions on the relationship of recent topological interlocking research and Gerard Caris’ respective artworks, as well as for creating the drawings/renderings in Fig. 24 for this paper. Thank you also to Jasmine Segarra for proofreading this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelie Leopold .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Leopold, C. (2019). Geometric and Aesthetic Concepts Based on Pentagonal Structures. In: Sriraman, B. (eds) Handbook of the Mathematics of the Arts and Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-70658-0_20-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70658-0_20-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70658-0

  • Online ISBN: 978-3-319-70658-0

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Geometric and Aesthetic Concepts Based on Pentagonal Structures
    Published:
    18 March 2019

    DOI: https://doi.org/10.1007/978-3-319-70658-0_20-2

  2. Original

    Geometric and Aesthetic Concepts Based on Pentagonal Structures
    Published:
    28 December 2018

    DOI: https://doi.org/10.1007/978-3-319-70658-0_20-1