Skip to main content

Laser Printing of Biomaterials

  • 123 Accesses

Abstract

Laser printing is an important tool to create micro- and nanosystems made of biomaterials for medical and biological applications. Laser light is tightly focused and directly irradiated on the fabrication materials to fabricate structures along the designated laser light path (laser direct write, LDW). The advantages and disadvantages of the properties of ultrafast lasers are presented. Two distinct methods, (i) laser-induced transfer and (ii) laser-induced generation and degradation, are discussed in detail. Laser-induced transfer can be forward (laser-induced forward transfer, LIFT) and backward (laser-induced backward transfer, LIBT). Laser-induced generation of cross-linked or polymeric networks is additive manufacturing and laser-induced degradation of cross-linked or polymeric networks is subtractive manufacturing, both by laser direct write. Exemplary applications show the recent advances in the field such as multilayered skin-graft printing, spatially well-defined cell culture scaffolds or blood vessel formation. Three-dimensional laser printing of biomaterials has the potential to address various challenges in biomedical applications, such as biochips and scaffold devices.

This is a preview of subscription content, log in via an institution.

References

  • Åkerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555

    Article  Google Scholar 

  • Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9:4

    Article  Google Scholar 

  • Daronch M, Rueggeberg FA, De Goes MF (2005) Monomer conversion of pre-heated composite. J Dent Res 84:663

    Article  Google Scholar 

  • Deng Y, Renaud P, Guo Z et al (2017) Single cell isolation process with laser induced forward transfer. J Biol Eng 11:2

    Article  Google Scholar 

  • Doraiswamy A, Jin C, Narayan RJ et al (2006) Two photon induced polymerization of organic–inorganic hybrid biomaterials for microstructured medical devices. Acta Biomater 2:267–275

    Article  Google Scholar 

  • Eaton SM, Zhang H, Herman PR et al (2005) Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt Express 13:4708–4716

    Article  ADS  Google Scholar 

  • Eaton SM, Zhang H, Ng ML et al (2008) Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides. Opt Express 16:9443–9458

    Google Scholar 

  • Engelhardt S, Hoch E, Borchers K et al (2011) Fabrication of 2D protein microstructures and 3D polymer–protein hybrid microstructures by two-photon polymerization. Biofabrication 3:025003

    Article  ADS  Google Scholar 

  • Feinaeugle M, Gregorčič P, Heath DJ et al (2017) Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films. Appl Surf Sci 396:1231–1238

    Article  ADS  Google Scholar 

  • Fischer J, Wegener M (2013) Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev 7:22–44

    Article  ADS  Google Scholar 

  • Gogate PR, Kabadi AM (2009) A review of appications of cavitation in biochemical engineering/ biotechnology. Biochem Eng J 44:60–72

    Article  Google Scholar 

  • Gräf S, Kunz C, Engel S et al (2018) Femtosecond laser-induced periodic surface structures on fused silica: the impact of the initial substrate temperature. Materials 11:1340

    Article  ADS  Google Scholar 

  • Gruene M, Deiwick A, Koch L et al (2010) Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods 17:79

    Article  Google Scholar 

  • Hopp B, Smausz T, Kresz N et al (2005) Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng 11:1817–1823

    Article  Google Scholar 

  • Hribar KC, Meggs K, Liu J et al (2015) Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser. Sci Rep 5:17203

    Article  ADS  Google Scholar 

  • Iosin M, Scheul T, Nizak C et al (2011) Laser microstructuration of three-dimensional enzyme reactors in microfluidic channels. Microfluid Nanofluid 10:685–690

    Article  Google Scholar 

  • Jinno K, Tsumori F (2018) Room temperature impact deposition of ceramic by laser shock wave. Jpn J Appl Phys 57:6S1

    Article  Google Scholar 

  • Kaehr B, Scrymgeour DA (2016) Direct-write graded index materials realized in protein hydrogels. Appl Phys Lett 109:123701

    Article  ADS  Google Scholar 

  • Kaehr B, Allen R, Javier DJ et al (2004) Guiding neuronal neuronal development with in situ microfabrication. Proc Natl Acad Sci U S A 101:16104–16108

    Article  ADS  Google Scholar 

  • Kim S, Qiu F, Kim S et al (2013) Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv Mater 25:5863

    Article  Google Scholar 

  • Klein F, Richter B, Striebel T et al (2011) Two-component polymer scaffolds for controlled three-dimensional cell culture. Adv Mater 23:1341–1345

    Article  Google Scholar 

  • Koch L, Deiwick A, Schlie S et al (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng 109:1855–1863

    Article  Google Scholar 

  • Kojic N, Pritchard EM, Tao H et al (2012) Focal infection treatment using laser-mediated heating of injectable silk hydrogels with gold nanoparticles. Adv Funct Mater 22:3793–3798

    Article  Google Scholar 

  • Kuznetsov AI, Koch J, Chichkov BN (2009) Laser-induced backward transfer of gold nanodroplets. Opt Express 17:18820

    Article  ADS  Google Scholar 

  • Lebedevaite M, Ostrauskaite J, Skliutas E et al (2019) Photoinitiator free resins composed of plant-derived monomers for the optical μ-3D printing of thermosets. Polymers 11:116

    Article  Google Scholar 

  • Lin CL, Pan MJ, Chen HW et al (2015) Laser cross-linking protein captures for living cells on a biochip. Proc SPIE 9310:93100D

    Article  Google Scholar 

  • Machida M, Nakajima Y, Torres-Mapa ML et al (2018) Shrinkable silver diffraction grating fabricated inside a hydrogel using 522-nm femtosecond laser. Sci Rep 8:187

    Article  ADS  Google Scholar 

  • McKinnon DD, Brown TE, Kyburz KA et al (2014) Design and characterization of a synthetically accessible, photodegradable hydrogel for user-directed formation of neural networks. Biomacromolecules 15:2808

    Article  Google Scholar 

  • Michael S, Sorg H, Peck CT et al (2013) Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One 8:e57741

    Article  ADS  Google Scholar 

  • Mizeikis V, Purlys V, Buividas R et al (2014) Realization of structural color by direct laser write technique in photoresist. JLMN 9:42

    Article  Google Scholar 

  • Olsen MH, Hjortø GM, Hansen M et al (2013) In-chip fabrication of free-form 3D constructs for directed cell migration analysis. Lab Chip 13:4800–4809

    Article  Google Scholar 

  • Pradhan S, Keller KA, Sperduto JL et al (2017) Fundamentals of laser-based hydrogel degradation and applications in cell and tissue engineering. Adv Healthc Mater 6:1700681

    Article  Google Scholar 

  • Quick AS, Fischer J, Richter B et al (2013) Preparation of reactive three-dimensional microstructures via direct laser writing and thiol-ene chemistry. Macromol Rapid Commun 34:335

    Article  Google Scholar 

  • Richter B, Pauloehrl T, Kaschke J et al (2013) Three-dimensional microscaffolds exhibiting spatially resolved surface chemistry. Adv Mater 25:6117–6122

    Article  Google Scholar 

  • Rothammer M, Heep M-C, von Freymann G et al (2018) Enabling direct laser writing of cellulose-based submicron architectures. Cellulose 25:6031–6039

    Article  Google Scholar 

  • Serien D, Sugioka K (2018) Fabrication of three-dimensional proteinaceous micro- and nano-structures by femtosecond laser cross-linking. Opto-Electron Adv 1:180008

    Article  Google Scholar 

  • Serien D, Takeuchi S (2015) Fabrication of submicron proteinaceous structures by direct laser writing. Appl Phys Lett 107:013702

    Article  ADS  Google Scholar 

  • Serien D, Takeuchi S (2017) Multi-component microscaffold with 3D spatially defined proteinaceous environment. ACS Biomater Sci Eng 3:487–494

    Article  Google Scholar 

  • Serien D, Kawano H, Miyawaki A et al (2018) Femtosecond laser direct write integration of multi-protein patterns and 3D microstructures into 3D glass microfluidic devices. Appl Sci 8:147

    Article  Google Scholar 

  • Serra P, Fernández-pradas JM, Colina M et al (2006) Laser-induced forward transfer: a direct-writing technique for biosensors preparation. JLMN 1:236–242

    Article  Google Scholar 

  • Sugioka K, Cheng Y (2014) Ultrafast lasers – reliable tools for advanced materials processing. Light Sci Appl 3:e149

    Article  ADS  Google Scholar 

  • Sun YL, Dong WF, Niu LG et al (2014) Protein-based soft micro-optics fabricated by femtosecond laser direct writing. Light Sci Appl 3:e129

    Article  Google Scholar 

  • Sun YL, Li Q, Sun SM et al (2015) Aqueous multiphoton lithography with multifunctional silk-centred bio-resists. Nat Commun 6:8612

    Article  ADS  Google Scholar 

  • Tan B, Venkatakrishnan K, Makaronets A (2013) Effects of pulsewidth on two-photon polymerization. Des Monomers Polym 16:145–150

    Article  Google Scholar 

  • Uppal N, Shiakolas PS (2008) Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics. J Micro/Nanolithog, MEMS, MOEMS 7:043002

    Article  Google Scholar 

  • Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103:577–644

    Article  Google Scholar 

  • Williams DF (2009) On the nature of biomaterials. Biomaterials 30:5897–5909

    Article  Google Scholar 

  • Wu D, Wu SZ, Xu J et al (2014) Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip. Laser Photonics Rev 8:458–467

    Article  ADS  Google Scholar 

  • Xu Y, Wang R, Ma S et al (2018) Theoretical analysis and simulation of pulsed laser heating at interface. J Appl Phys 123:025301

    Article  ADS  Google Scholar 

  • Zergioti I, Karaiskou A, Papazoglou DG et al (2005) Femtosecond laser microprinting of biomaterials. Appl Phys Lett 86:163902

    Article  ADS  Google Scholar 

  • Zhang J, Hartmann B, Siegel J et al (2018) Sacrificial-layer free transfer of mammalian cells using near infrared femtosecond laser pulses. PLoS One 13(5):e0195479

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Sugioka .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Serien, D., Sugioka, K. (2021). Laser Printing of Biomaterials. In: Sugioka, K. (eds) Handbook of Laser Micro- and Nano-Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-69537-2_52-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69537-2_52-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69537-2

  • Online ISBN: 978-3-319-69537-2

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Laser Printing of Biomaterials
    Published:
    31 August 2021

    DOI: https://doi.org/10.1007/978-3-319-69537-2_52-2

  2. Original

    Laser Printing of Biomaterials
    Published:
    18 November 2020

    DOI: https://doi.org/10.1007/978-3-319-69537-2_52-1