Skip to main content

Extraordinary Young’s Interferences and Super-Diffraction Laser Lithography

  • Living reference work entry
  • First Online:

Abstract

As a low-cost, high-efficient, and large-area nanofabrication approach, optical lithography has attracted a great deal of interests and shows promising applications in integrated circuit manufacturing. However, the diffraction limit of light leads to the resolution improvement of optical lithography relying on the shrinking wavelength of exposure source, which is hard to be maintained. Inspired by the extraordinary Young’s interference, the short wavelength property of M-wave, a special surface wave confined at the surface of structured materials, is discovered, which offers a potential way to surpass the traditional diffraction limit. During the past years, researchers have proposed a variety of plasmonic lithography methods in the manner of interference and imaging and have demonstrated that sub-diffraction resolution could be achieved by theoretical simulations or experiments. This chapter will give a review and some discussion about the advances in this realm.

This is a preview of subscription content, log in via an institution.

References

  • Bourke L, Blaikie RJ (2017a) Genetic algorithm optimization of grating coupled near-field interference lithography systems at extreme numerical apertures. J Opt 19:095003

    Article  ADS  Google Scholar 

  • Bourke L, Blaikie RJ (2017b) Herpin effective media resonant underlayers and resonant overlayer designs for ultra-high NA interference lithography. J Opt Soc Am A 34:2243–2249

    Article  ADS  Google Scholar 

  • Chen X, Yang F, Zhang C et al (2016) Large-area high aspect ratio plasmonic interference lithography utilizing a single high-k mode. ACS Nano 10:4039–4045

    Article  Google Scholar 

  • Dong J, Liu J, Kang G et al (2014) Pushing the resolution of photolithography down to 15nm by surface plasmon interference. Sci Rep 4:5618

    Article  Google Scholar 

  • Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308:534–537

    Article  ADS  Google Scholar 

  • Feng Q, Pu M, Hu C, Luo X (2012) Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt Lett 37:2133–2135

    Article  ADS  Google Scholar 

  • Gao P, Yao N, Wang C et al (2015) Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Appl Phys Lett 106:093110

    Article  ADS  Google Scholar 

  • Garcia-Vidal FJ, Martin-Moreno L, Ebbesen TW, Kuipers L (2010) Light passing through subwavelength apertures. Rev Mod Phys 82:729–787

    Article  ADS  Google Scholar 

  • Guo Z, Zhao ZY, Yan LS et al (2014) Moiré fringes characterization of surface plasmon transmission and filtering in multi metal-dielectric films. Appl Phys Lett 105:141107

    Article  ADS  Google Scholar 

  • Guo Y, Wang Y, Pu M et al (2015a) Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Sci Rep 5:8434

    Article  Google Scholar 

  • Guo Y, Yan L, Pan W, Luo B (2015b) Generation and manipulation of orbital angular momentum by all-dielectric metasurfaces. Plasmonics 11:337–344

    Article  Google Scholar 

  • Guo Y, Yan L, Pan W, Luo B (2015c) Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface. Opt Express 23:27566–27575

    Article  ADS  Google Scholar 

  • Guo Y, Pu M, Zhao Z et al (2016) Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photon 3:2022–2029

    Article  Google Scholar 

  • Guo Y, Ma X, Pu M et al (2018a) High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens. Adv Opt Mater 6:1800592

    Article  Google Scholar 

  • Guo Y, Pu M, Li X et al (2018b) Functional metasurfaces based on metallic and dielectric subwavelength slits and stripes array. J Phys Condens Matter 30:144003

    Article  ADS  Google Scholar 

  • Huang Q, Wang C, Yao N et al (2014) Improving imaging contrast of non-contacted plasmonic lens by off-axis illumination with high numerical aperture. Plasmonics 9:699–706

    Article  Google Scholar 

  • Huang Y, Luo J, Pu M et al (2018) Catenary electromagnetics for ultra-broadband lightweight absorbers and large-scale flat antennas. Adv Sci 6(7):1801691

    Article  Google Scholar 

  • Khorasaninejad M, Chen WT, Devlin RC et al (2016) Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352:1190

    Article  ADS  Google Scholar 

  • Lee H, Xiong Y, Fang N et al (2005) Realization of optical superlens imaging below the diffraction limit. New J Phys 7:255

    Article  Google Scholar 

  • Li Y, Liu F, Xiao L et al (2013) Two-surface-plasmon-polariton-absorption based nanolithography. Appl Phys Lett 102:063113

    Article  ADS  Google Scholar 

  • Liang G, Wang C, Zhao Z et al (2015) Squeezing bulk plasmon polaritons through hyperbolic metamaterial for large-area deep subwavelength interference lithography. Adv Opt Mater 3:1248–1256

    Article  Google Scholar 

  • Liu Z, Wei Q, Zhang X (2005) Surface plasmon interference nanolithography. Nano Lett 5:957–961

    Article  ADS  Google Scholar 

  • Liu L, Liu K, Zhao Z et al (2016a) Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer. RSC Adv 6:95973–95978

    Article  Google Scholar 

  • Liu L, Luo Y, Zhao Z et al (2016b) Large area and deep sub-wavelength interference lithography employing odd surface plasmon modes. Sci Rep 6:30450

    Article  ADS  Google Scholar 

  • Liu H, Kong W, Liu K et al (2017a) Deep subwavelength interference lithography with tunable pattern period based on bulk plasmon polaritons. Opt Express 25:20511–20521

    Article  ADS  Google Scholar 

  • Liu L, Zhang X, Zhao Z et al (2017b) Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography. Adv Opt Mater 5:1700429

    Article  Google Scholar 

  • Liu H, Luo Y, Kong W et al (2018) Large area deep subwavelength interference lithography with a 35 nm half-period based on bulk plasmon polaritons. Opt Mater Express 8:199–209

    Article  ADS  Google Scholar 

  • Luo X (2015) Principles of electromagnetic waves in metasurfaces. Sci China-Phys Mech Astron 58:594201

    Article  ADS  Google Scholar 

  • Luo X (2018a) Subwavelength optical engineering with metasurface waves. Adv Opt Mater 6:1701201

    Article  Google Scholar 

  • Luo X (2018b) Engineering optics 2.0: a revolution in optical materials, devices, and systems. ACS Photon 5:4724–4738

    Article  Google Scholar 

  • Luo X (2018c) Plasmonic metalens for nanofabrication. Natl Sci Rev 5:137–138

    Article  Google Scholar 

  • Luo X (2019) Subwavelength artificial structures: opening a new era for engineering optics. Adv Mater 31:1804680

    Article  Google Scholar 

  • Luo X, Ishihara T (2004a) Surface plasmon resonant interference nanolithography technique. Appl Phys Lett 84:4780–4782

    Article  ADS  Google Scholar 

  • Luo X, Ishihara T (2004b) Subwavelength photolithography based on surface-plasmon polariton resonance. Opt Express 12:3055–3065

    Article  ADS  Google Scholar 

  • Luo X, Yan L (2012) Surface plasmon polaritons and its applications. IEEE Photon J 4:590–595

    Article  ADS  Google Scholar 

  • Luo J, Zeng B, Wang C et al (2015) Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography. Nanoscale 7:18805–18812

    Article  ADS  Google Scholar 

  • Luo X, Tsai D, Gu M, Hong M (2019) Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chem Soc Rev 48:2458. https://doi.org/10.1039/C8CS00864G

    Article  Google Scholar 

  • Melville D, Blaikie R (2005) Super-resolution imaging through a planar silver layer. Opt Express 13:2127–2134

    Article  ADS  Google Scholar 

  • Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969

    Article  ADS  Google Scholar 

  • Pu M, Hu C, Wang M et al (2011) Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt Express 19:17413–17420

    Article  ADS  Google Scholar 

  • Pu M, Chen P, Wang Y et al (2013) Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Appl Phys Lett 102:131906

    Article  ADS  Google Scholar 

  • Pu M, Ma X, Li X et al (2017) Merging plasmonics and metamaterials by two-dimensional subwavelength structures. J Mater Chem C 5:4361–4378

    Article  Google Scholar 

  • Pu M, Guo Y, Li X et al (2018a) Revisitation of extraordinary young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photon 5:3198–3204

    Article  Google Scholar 

  • Pu M, Ma X, Guo Y et al (2018b) Theory of microscopic meta-surface waves based on catenary optical fields and dispersion. Opt Express 26:19555–19562

    Article  ADS  Google Scholar 

  • Pu M, Guo Y, Ma X et al (2019) Methodologies for on-demand dispersion engineering of waves in metasurfaces. Adv Opt Mater 7:1801376. https://doi.org/10.1002/adom.201801376

    Article  Google Scholar 

  • Ramakrishna SA, Pendry JB, Schurig D et al (2002) The asymmetric lossy near-perfect lens. J Mod Opt 49:1747–1762

    Article  ADS  MATH  Google Scholar 

  • Ren G, Wang C, Yi G et al (2013) Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer. Plasmonics 8:1065–1072

    Article  Google Scholar 

  • Schouten HF, Kuzmin N, Dubois G et al (2005) Plasmon-assisted two-slit transmission: young’s experiment revisited. Phys Rev Lett 94:053901

    Article  ADS  Google Scholar 

  • Shi H, Luo X, Du C (2007) Young’s interference of double metallic nanoslit with different widths. Opt Express 15:11321–11327

    Article  ADS  Google Scholar 

  • Song M, Li X, Pu M et al (2018) Color display and encryption with a plasmonic polarizing metamirror. Nano 7:323

    Google Scholar 

  • Sun J, Xu T, Litchinitser NM (2016) Experimental demonstration of demagnifying hyperlens. Nano Lett 16:7905–7909

    Article  ADS  Google Scholar 

  • Tao X, Wang C, Zhao Z et al (2014) A method for uniform demagnification imaging beyond the diffraction limit: cascaded planar hyperlens. Appl Phys B Lasers Opt 114:545–550

    Article  ADS  Google Scholar 

  • Wang W, Xing H, Fang L et al (2008) Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial. Opt Express 16:21142–21148

    Article  ADS  Google Scholar 

  • Wang C, Gao P, Tao X et al (2013a) Far field observation and theoretical analyses of light directional imaging in metamaterial with stacked metal-dielectric films. Appl Phys Lett 103:031911

    Article  ADS  Google Scholar 

  • Wang C, Gao P, Zhao Z et al (2013b) Deep sub-wavelength imaging lithography by a reflective plasmonic slab. Opt Express 21:20683–20691

    Article  ADS  Google Scholar 

  • Wang C, Zhang W, Zhao Z et al (2016) Plasmonic structures, materials and lenses for optical lithography beyond the diffraction limit: a review. Micromachines 7:118

    Article  Google Scholar 

  • Xie X, Pu M, Huang Y et al (2019) Heat resisting metallic meta-skin for simultaneous microwave broadband scattering and infrared invisibility based on catenary optical field. Adv Mater Technol 4:1800612

    Article  Google Scholar 

  • Xiong Y, Liu Z, Zhang X (2009) A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm. Appl Phys Lett 94:203108

    Article  ADS  Google Scholar 

  • Xu T, Wang C, Du C, Luo X (2008a) Plasmonic beam deflector. Opt Express 16:4753–4759

    Article  ADS  Google Scholar 

  • Xu T, Zhao Y, Gan D et al (2008b) Directional excitation of surface plasmons with subwavelength slits. Appl Phys Lett 92:101501

    Article  ADS  Google Scholar 

  • Xu T, Zhao Y, Ma J et al (2008c) Sub-diffraction-limited interference photolithography with metamaterials. Opt Express 16:13579–13584

    Article  ADS  Google Scholar 

  • Xu T, Fang L, Ma J et al (2009) Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns. Appl Phys B Lasers Opt 97:175–179

    Article  ADS  Google Scholar 

  • Yan C, Li X, Pu M et al (2019) Generation of polarization-sensitive modulated optical vortices with all-dielectric metasurfaces. ACS Photon 6:628–633

    Article  Google Scholar 

  • Yao N, Wang C, Tao X et al (2013) Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure. Nanotechnology 24:135203

    Article  ADS  Google Scholar 

  • Zhang W, Wang H, Wang C et al (2015a) Elongating the air working distance of near-field plasmonic lens by surface plasmon illumination. Plasmonics 10:51–56

    Article  Google Scholar 

  • Zhang Z, Luo J, Song M, Yu H (2015b) Large-area, broadband and high-efficiency near-infrared linear polarization manipulating metasurface fabricated by orthogonal interference lithography. Appl Phys Lett 107:241904

    Article  ADS  Google Scholar 

  • Zhang F, Pu M, Li X et al (2017) All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Adv Funct Mater 27:1704295

    Article  Google Scholar 

  • Zhao Z, Luo Y, Zhang W et al (2015) Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination. Sci Rep 5:15320

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangang Luo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Luo, X. (2020). Extraordinary Young’s Interferences and Super-Diffraction Laser Lithography. In: Sugioka, K. (eds) Handbook of Laser Micro- and Nano-Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-69537-2_42-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69537-2_42-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69537-2

  • Online ISBN: 978-3-319-69537-2

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics