Skip to main content

Surface Hybrid Structuring by Laser Removal and Subtractive Processing

  • Living reference work entry
  • First Online:
Book cover Handbook of Laser Micro- and Nano-Engineering
  • 302 Accesses

Abstract

It is well known that laser has become a powerful tool for surface hybrid structuring. Some unique properties of the lasers include well monochromaticity, highly collimated as well as high intensity, and coherence. The interaction between the laser and materials is a dynamic and complex process, which is the most important scientific problem for its applications. The corresponding mechanisms vary significantly owing to the large span of pulse durations and other parameters. In order to have a deep insight into it, this chapter evaluates the laser-ablated debris dynamics, including its formation and deposition. Surface superhydrophobicity, surface-enhanced Raman spectroscopy, and metal surface color marking fabricated by short and ultrashort pulse lasers are studied as representing cases to highlight the significance of laser removal and subtractive processing in modern manufacturing industry and scientific research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bäuerle D (2011) Laser processing and chemistry. Springer, Berlin/Heidelberg, pp 13–85

    Book  Google Scholar 

  • Bennett HE, Silver M, Ashley EJ (1963) Infrared reflectance of aluminum evaporated in ultra-high vacuum. JOSA 53(9):1089–1095

    Article  ADS  Google Scholar 

  • Bico J, Thiele U, Quéré D (2002) Wetting of textured surfaces. Colloid Surf A 206(1–3):41–46

    Article  Google Scholar 

  • Born M, Wolf E (1980) Principles of optics. Pergamon, New York, pp 393–401

    Google Scholar 

  • Bulgakova N, Bulgakov A (2001) Pulsed laser ablation of solids: transition from normal vaporization to phase explosion. Appl Phys A Mater 73(2):199–208

    Article  ADS  Google Scholar 

  • Cao W, Jiang L, Hu J et al (2017) Optical field enhancement in au Nano-particle-decorated Nanorod arrays prepared by femtosecond laser and their tunable surface-enhanced Raman scattering applications. ACS Appl Mater Inter 10(1):1297–1305

    Article  Google Scholar 

  • Chang HW, Tsai YC, Cheng CW et al (2011) Nanostructured ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering. J Colloid Interf Sci 360(1):305–308

    Article  ADS  Google Scholar 

  • Cialla D, März A, Böhme R et al (2012) Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403(1):27–54

    Article  Google Scholar 

  • Deinega A, Valuev I, Potapkin B et al (2010) Antireflective properties of pyramidally textured surfaces. Opt Lett 35(2):106–108

    Article  ADS  Google Scholar 

  • Dowden J (2009) The theory of laser materials processing. Heat and Mass Transfer in Modern Technology. Springer, Cham, pp 153–156

    Book  Google Scholar 

  • Dunn A, Wasley TJ, Li J et al (2016) Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition. Appl Surf Sci 365:153–159

    Article  ADS  Google Scholar 

  • Fan PX, Zhong ML, Li L et al (2013) Sequential color change on copper surfaces via micro/nano structure modification induced by a picosecond laser. J Appl Phys 114(8):083518

    Article  ADS  Google Scholar 

  • Ferry VE, Munday JN, Atwater HA (2010) Design considerations for plasmonic photovoltaics. Adv Mater 22(43):4794–4808

    Article  Google Scholar 

  • Geohegan D, Chrisey D, Hubler G (eds) (1994) Pulsed laser deposition of thin films. Wiley, New York, pp 59–69

    Google Scholar 

  • Götz T, Stuke M (1997) Short-pulse UV laser ablation of solid and liquid metals: indium. Appl Phys A Mater 64(6):539–543

    Article  ADS  Google Scholar 

  • Gunton D (1983) The dynamics of first order phase transitions. In: Phase transitions and critical phenomena, vol 8. Academic, London, pp 267–466

    Google Scholar 

  • Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nano-particle optics. J Phys Chem B 105(24):5599–5611

    Article  Google Scholar 

  • He A, Liu W, Xue W et al (2018) Nanosecond laser ablated copper superhydrophobic surface with tunable ultrahigh adhesion and its renewability with low temperature annealing. Appl Surf Sci 434:120–125

    Article  ADS  Google Scholar 

  • Horwitz JS, Sprague JA (1994) Film nucleation and film growth in pulsed laser deposition of ceramics. In: Pulsed laser deposition of thin films. Wiley, New York, pp 229–254

    Google Scholar 

  • Jiang T, Guo Z, Liu W (2015) Biomimetic superoleophobic surfaces: focusing on their fabrication and applications. J Mater Chem A 3(5):1811–1827

    Article  Google Scholar 

  • Kneipp K, Wang Y, Kneipp H et al (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667

    Article  ADS  Google Scholar 

  • Landau LD, Lifshitz EM, Pitaevskii L (1980) Statistical physics, part I. Pergamon, Oxford, pp 48–70

    Google Scholar 

  • Li ZL, Zheng HY, Teh KM et al (2009) Analysis of oxide formation induced by UV laser coloration of stainless steel. Appl Surf Sci 256(5):1582–1588

    Article  ADS  Google Scholar 

  • Lin Y, Han JP, Cai MY et al (2018) Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability. J Mater Chem A 6(19):9049–9056

    Article  Google Scholar 

  • Liu B, Zeng HC (2004) Mesoscale organization of CuO nanoribbons: formation of “dandelion”. J Am Chem Soc 126(26):8124–8125

    Article  Google Scholar 

  • Long JY, Fan PX, Gong DW et al (2015) Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal. ACS Appl Mater Inter 7(18):9858–9865

    Article  Google Scholar 

  • Luk’Yanchuk B, Bityurin N, Anisimov S et al (1994) Photophysical ablation of organic polymers. Excimer Lasers. Springer, Dordrecht, pp 59–77

    Google Scholar 

  • Luo FF, Ong WL, Guan YC et al (2015) Study of micro/nanostructures formed by a nanosecond laser in gaseous environments for stainless steel surface coloring. Appl Surf Sci 328:405–409

    Article  ADS  Google Scholar 

  • Madsen N, Gamaly EG, Rode AV et al (2007) Cluster formation through the action of a single picosecond laser pulse. J Phys Conf Ser 1:762. IOP Publishing, Bristol

    Article  ADS  Google Scholar 

  • Moradi S, Englezos P, Hatzikiriakos SG (2014) Contact angle hysteresis of non-flattened-top micro/nanostructures. Langmuir 30(11):3274–3284

    Article  Google Scholar 

  • Moreno E, Rodrigo SG, Bozhevolnyi SI et al (2008) Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys Rev Lett 100(2):023901

    Article  ADS  Google Scholar 

  • O’Hana S, Pinkerton AJ, Shoba K et al (2008) Laser surface colouring of titanium for contemporary jewellery. Surf Eng 24(2):147–153

    Article  Google Scholar 

  • Ohkubo T, Kuwata M, Luk’yanchuk B et al (2003) Numerical analysis of nanocluster formation within ns-laser ablation plume. Appl Phys A Mater 77(2):271–275

    Article  ADS  Google Scholar 

  • Pflügl W, Titulaer U (1993) The size distribution of liquid droplets during their growth from a vapor. Phys A 198(3–4):410–422

    Article  Google Scholar 

  • Qiao BZ, Xu DG, Hung TF et al (2013) Facile synthesis, growth mechanism and reversible superhydrophobic and superhydrophilic properties of non-flaking CuO nanowires grown from porous copper substrates. Nanotechnology 24(6):065602

    Article  ADS  Google Scholar 

  • Ragesh P, Ganesh VA, Nair SV et al (2014) A review on ‘self-cleaning and multifunctional materials’. J Mater Chem A 2(36):14773–14797

    Article  Google Scholar 

  • Stoian R, Ashkenasi D, Rosenfeld A et al (2000) The dynamics of ion expulsion in ultrashort pulse laser sputtering of Al2O3. Nucl Instrum Meth B 166:682–690

    Article  ADS  Google Scholar 

  • Tan XD, Jiang L, Hu J et al (2015) Highly sensitive and homogeneous SERS substrate fabricated by a femtosecond laser combined with dewetting. Chin Opt Lett 13(11):111401

    Article  ADS  Google Scholar 

  • Tang M, Shim V, Pan Z et al (2011) Laser ablation of metal substrates for super-hydrophobic effect. J Laser Micro Nanoen 6(1):6

    Article  Google Scholar 

  • Thompson CV (2012) Solid-state dewetting of thin films. Annu Rev Mater Res 42:399–434

    Article  ADS  Google Scholar 

  • Van Stralen S, Cole R (1979) Boiling phenomena: physicochemical and engineering fundamentals and applications, vol 2. Hemisphere, Philadelphia, pp 12–14

    Google Scholar 

  • Veiko VP, Slobodov AA, Odintsova GV (2013) Availability of methods of chemical thermodynamics and kinetics for the analysis of chemical transformations on metal surfaces under pulsed laser action. Laser Phys 23(6):066001

    Article  ADS  Google Scholar 

  • Veiko V, Odintsova G, Ageev E et al (2014) Controlled oxide films formation by nanosecond laser pulses for color marking. Opt Express 22(20):24342–24347

    Article  ADS  Google Scholar 

  • Veiko V, Karlagina Y, Moskvin M et al (2017) Metal surface coloration by oxide periodic structures formed with nanosecond laser pulses. Opt Laser Eng 96:63–67

    Article  Google Scholar 

  • Vorobyev AY, Guo CL (2008) Colorizing metals with femtosecond laser pulses. Appl Phys Lett 92(4):041914

    Article  ADS  Google Scholar 

  • Wu W, Zhu Q, Qing F et al (2008a) Water repellency on a fluorine-containing polyurethane surface: toward understanding the surface self-cleaning effect. Langmuir 25(1):17–20

    Article  Google Scholar 

  • Wu DY, Li JF, Ren B et al (2008b) Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem Soc Rev 37(5):1025–1041

    Article  Google Scholar 

  • Xu KC, Zhang CT, Zhou R et al (2016) Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering. Opt Express 24(10): 10352–10358

    Article  ADS  Google Scholar 

  • Yang J, Luo FF, Kao TS et al (2014) Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing. Light Sci Appl 3(7):e185

    Article  Google Scholar 

  • Zhu ZQ, Yan ZD, Zhan P et al (2013) Large-area surface-enhanced Raman scattering-active substrates fabricated by femtosecond laser ablation. Sci China Phy Mech 56(9):1806–1809

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Hong .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fengping, L., Ye, D., Lijun, Y., Yao, X., Hong, M. (2020). Surface Hybrid Structuring by Laser Removal and Subtractive Processing. In: Sugioka, K. (eds) Handbook of Laser Micro- and Nano-Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-69537-2_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69537-2_40-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69537-2

  • Online ISBN: 978-3-319-69537-2

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics