## Abstract

Characteristic for much of the electronic behavior in solids is the existence of energy bands, separated by bandgaps. The bands are permitted for occupation with carriers, and their origin can be described by two complementary models. The *proximity approach* considers the effect of the neighborhood in a solid on the energy levels of an isolated atom; this model is particularly suited for organic semiconductors, amorphous semiconductors, and clusters of atoms. The *periodicity approach* emphasizes the long-range periodicity of the potential in a crystal. Electrons near the lower edge of a band in a crystal behave akin to electrons in vacuum; the influence of the crystal potential is expressed by an *effective* electron mass which increases with increasing distance from the band edge. This chapter describes the basic elements of the electronic band structure in solids.

## Access this chapter

Tax calculation will be finalised at checkout

Purchases are for personal use only

### Similar content being viewed by others

## Notes

- 1.
Applying Δ

*E*Δ*t*≅*ħ*and relating Δ*t*to the time an electron resides at a sufficiently high energy level*E*_{ ik }(later identified as belonging to an upper band), an uncertainty of Δ*E*results. The time Δ*t*is related to scattering (see Sect. 2 in chapter “Carrier-Transport Equations”); the electron is removed from this level after*λ*/*v*_{rms}≈ 10^{−12}s, yielding an uncertainty of ~1 meV, which is on the same order as the splitting provided by only 10^{4}atoms (assuming a band width of ~1 eV and an equidistant splitting of 1 level per added atom – that is, within a crystallite of <100 Å diameter. With larger crystallites the splitting is even closer and results in a level continuum. - 2.
The de Broglie wavelength is on the same order of magnitude as the uncertainty distance obtained from Heisenberg’s uncertainty principle Δ

*x*≥*ħ*/Δ*p*_{ x }, which has the same form as*λ*_{DB}. This yields uncertainty distances of 10 Å for thermal (free) electrons at room temperature. - 3.
In one dimension, there are other periodic potentials for which the Schrödinger equation can be integrated explicitly.

*V*(*x*) = −*V*_{0}sech^{2}(*γx*) is one such potential, which yields solutions in terms of hypergeometric functions (see Mills and Montroll 1970). The results are quite similar to the Kronig-Penney potential. - 4.
For

*E*>*V*_{0}, the square root in*β*becomes imaginary. Introducing \( \gamma =i\sqrt{2{m}_0\left(e-{V}_0\right)/{\hbar}^2} \) and with sinh(*iγ*) =*i*sin*γ*and cosh(*iγ*) =*i*cos*γ*, we obtain for higher electron energies a similar equation:$$ -\frac{\gamma^2+{\alpha}^2}{2\alpha \gamma}\sin \left(\gamma {a}_2\right)\sin \left(\alpha {a}_1\right)+\cos \left(\gamma {a}_2\right)\cos \left(\alpha {a}_1\right)=\cos (ka). $$ - 5.
This concept must be used with caution, since

**k**is a good quantum number only when electrons can move without scattering over at least several lattice distances. That is certainly not the case in most amorphous semiconductors near the “band edge” (see Sect. 4 in chapter “Carrier Transport Induced and Controlled by Defects”). However, at higher energies further inside the band, there is some evidence that the mean free path (Sect. 2 in chapter “Carrier-Transport Equations”) is much larger than the interatomic distance even in amorphous semiconductors. In bringing the two approaches together, the argument presented here lacks rigor and has plausibility only in terms of correspondence. - 6.
In an infinite crystal, the electron (when not interacting with a localized defect) is not localized and is described by a simple wavefunction (i.e., having one wavelength and the same amplitude throughout the crystal). The probability of finding it is the same throughout the crystal (∝

*ψ*^{2}). When localized, the electron is represented by a superposition of several wavefunctions of slightly different wavelengths. The superposition of these wavefunctions is referred to as a*wave packet*. A moving electron is represented by a moving wave packet \( \psi =\frac{1}{2\delta k}{\int}_{k-\delta k}^{k+\delta k}u\left(x,k\right)\exp \left(i,\left( kx-\omega t\right), \right) dk \) which quickly spreads out over time. It has its maximum at a position \( \overline{x}=\frac{1}{\hbar}\frac{\partial E}{\partial k}t \), yielding for the group velocity, i.e., the velocity of the maximum of the wave packet, \( {v}_g=\frac{\partial \overline{x}}{\partial t}=\frac{1}{\hbar}\frac{\partial E}{\partial k} \). With*E*=*ħω*, we obtain \( {v}_g=\frac{\partial \omega }{\partial k} \). - 7.
For the electron behavior, only

*expectation values*can be given. In order to maintain Newton’s second law, we continue to use*ℏk*(Eq. 15), which is no longer an electron momentum. It is well defined within the crystal and is referred to as*crystal momentum*. We then separate the electron properties from those of the crystal by using*∂*^{2}*E*/*∂k*^{2}to define its*effective mass*. - 8.
In theory, the electron will continue to accelerate in the opposite direction to the field and lose energy, thereby descending in the band, and the above-described process will proceed in the reverse direction until the electron has reached the lower band edge, where the entire process repeats itself. This oscillating behavior is called the

*Bloch oscillation*. Long before the oscillation can be completed, however, scattering interrupts the process. Whether in rare cases (e.g., in narrow mini-bands of superlattices or ultrapure semiconductors at low temperatures) such Bloch oscillations are observable, and whether they are theoretically justifiable in more advanced models (Krieger and Iafrate 1986), is controversial. In three-dimensional lattices, other bands overlap and transitions into these bands complicate the picture. - 9.
This energy difference represents the binding energy of the exciton; its value is much larger than values found in inorganic semiconductors. A large binding energy corresponds to a strong spatial localization, a typical feature of excitons in organic crystals.

- 10.
The polaron character of mobile carriers in organic crystal is often not explicitly considered; in analogy to the quasiparticles of inorganic semiconductors, the carriers are simply termed electrons and holes.

- 11.
The mobility of electrons is defined in Sect. 2.2 in chapter “Carrier-Transport Equations” by

*μ*= (*q/m**) ×*τ*, with effective mass*m**, charge*q*, and a mean time*τ*between scattering events; in organic crystals*μ*_{300Κ}is usually below 1 cm^{2}/(Vs), often orders of magnitude smaller, compared to values of 10^{3}cm^{2}/(Vs) for inorganic semiconductors.

## References

Adler D (1985) Chemistry and physics of covalent amorphous semiconductors. In: Adler D, Schwartz BB, Steele MC (eds) Physical properties of amorphous materials. Plenum Press, New York, p 5–103

Agarwal SC (1995) Electronic structure of amorphous semiconductors. Bull Mater Sci 18:669

Anderson PW (1963) Concepts in solids. W. A. Benjamin, New York

Ashcroft NW, Mermin ND (1976) Solid state physics. Holt Reinhart and Winston, New York

Beeby JL, Hayes TM (1989) A calculation of the density of electronic states for amorphous semiconductors. J Non-Cryst Solids 114:253

Bloch F (1928) Über die Quantenmechanik der Elektronen in Kristallgittern. Z Phys 52:555 (On the quantum mechanics of electrons in crystal lattices, in German)

Bube RH (1992) Electrons in solids, an introductory survey, 3rd edn. Academic Press, New York

Callaway J (1976) Quantum theory of solid state. Academic Press, New York

Eberhart ME, Johnson KH, Adler D (1982) Theoretical models for the electronic structures of hydrogenated amorphous silicon. II. Three-center bonds. Phys Rev B 26:3138

Fletcher GC (1971) Electron bond theory of solids. North Holland, Amsterdam

Harrison WA (1980a) Solid state theory. Dover, New York

Harrison WA (1980b) Electronic structure and the properties of solids: the physics of chemical bonds. Freeman, San Francisco

Haug A (1972) Theoretical solid state physics. Pergamon Press, Oxford

Heine V (1980) Electronic structure from the point of view of the local atomic environment. Solid State Phys 35:1

Johnson KH, Kolari HJ, de Neufville JP, Morel DL (1980) Theoretical models for the electronic structures of hydrogenated amorphous silicon. Phys Rev B 21:643

Kaplan TA, Mahanti SD (1995) Electronic properties of solids using cluster methods. Kluwer/Plenum, New York

Karl N (1974) Organic semiconductors. Festkörperprobleme/Adv Sol State Phys 14:261

Kittel C (2007) Introduction to solid state physics, 7th edn. Wiley, New York

Krieger JB, Iafrate GJ (1986) Time evolution of Bloch electrons in a homogeneous electric field. Phys Rev B 33:5494; and (1987), Quantum transport for Bloch electrons in a spatially homogeneous electric field. Phys Rev B 35:9644

Kronig R de RL, Penney WG (1931) Quantum mechanics of electrons in crystal lattices. Proc R Soc Lond Ser A130:499

Marder MP (2010) Condensed matter physics, 2nd edn. Wiley, Hoboken

Mills RGJ, Montroll EW (1970) Quantum theory on a network. II. A solvable model which may have several bound states per node point. J Math Phys 11:2525

Ovshinsky SR, Adler D (1978) Local structure, bonding, and electric properties of covalent amorphous semiconductors. Contemp Phys 19:109

Reitz JR (1955) Methods of the one-electron theory of solids. Solid State Phys 1:1

Shinozuka Y (1999) Hybridization in electronic states and optical properties of covalent amorphous semiconductors. Mater Res Soc Symp Proc 588:309

Singh J, Shimakawa K (2003) Advances in amorphous semiconductors. CRC Press, Boca Raton

Slater JC, Johnson KH (1972) Self-consistent-field

*Xα*cluster method for polyatomic molecules and solids. Phys Rev B 5:844Street RA (2005) Hydrogenated amorphous silicon. Cambridge University Press, New York

Ziman JM (1972) Principles of the theory of solids. Cambridge University Press, Cambridge

## Author information

### Authors and Affiliations

## Rights and permissions

## Copyright information

© 2018 Springer International Publishing AG

## About this entry

### Cite this entry

Böer, K.W., Pohl, U.W. (2018). The Origin of Band Structure. In: Semiconductor Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-69150-3_6

### Download citation

DOI: https://doi.org/10.1007/978-3-319-69150-3_6

Published:

Publisher Name: Springer, Cham

Print ISBN: 978-3-319-69148-0

Online ISBN: 978-3-319-69150-3

eBook Packages: Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics