Skip to main content

The Structure of Semiconductors

  • Reference work entry
  • First Online:
Semiconductor Physics

Abstract

The bonding forces and atomic sizes determine the arrangement of the atoms in equilibrium in crystals. The crystal structure is determined by the tendency to fill a given space with the maximum number of atoms under the constraint of bonding forces and atomic radii. Crystal bonding and crystal structure are thus intimately related to each other and determine the intrinsic properties of semiconductors. Nonequilibrium states can be frozen-in and determine the structure of amorphous semiconductors. In an amorphous structure the short-range order is much like that in a crystal, while long-range periodicity does not exist. Quasicrystals are solids with an order between crystalline and amorphous. These quasiperiodic crystals have no three-dimensional translational periodicity, but exhibit long-range order in a diffraction experiment. A quasicrystalline pattern continuously fills all available space; unlike regular crystals space filling requires an aperiodic repetition of (at least) two different unit cells.

Superlattices and low-dimensional structures like quantum wires and quantum dots, created by alternating thin depositions of different semiconductors, show material properties which can be engineered by designing size and chemical composition. This opens the feasibility for fabricating new and improved devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 729.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    However, there is not always a unique way to define this coordinate system - see Sect. 1.1.3 below. For mathematical reasons, an orthogonal system is preferred when possible.

  2. 2.

    For example, from Na to Na in a NaCl crystal, and not from Na to the next Cl ion. “Equivalent” refers to the neighborhood of this atom, which must be identical to the atom at the origin.

  3. 3.

    Since each corner is shared by eight adjacent cells, only 1/8 of each corner atom belongs to each cell. Therefore, with eight corners one has 8 × 1/8 = 1 atom per primitive cell.

  4. 4.

    Each surface is shared by two neighbor cells; for example, with six surfaces, there are 6 × 1/2 = 3 surface atoms per unit cell.

  5. 5.

    A is the face spun between b and c, B between a and c, and C between a and b.

  6. 6.

    Thus, (r + s)/4 is a quarter of a face diagonal.

  7. 7.

    The general expression for the distance between two planes is given by

    $$ {d}_{hkl}^2=\frac{\left|\begin{array}{ccc}1& \cos \gamma & \cos \beta \\ {}\cos \gamma & 1& \cos \alpha \\ {}\cos \beta & \cos \alpha & 1\end{array}\right|}{\frac{h}{a}\left|\begin{array}{ccc}h/a& \cos \gamma & \cos \beta \\ {}k/b& 1& \cos \alpha \\ {}l/c& \cos \alpha & 1\end{array}\right|+\frac{k}{b}\left|\begin{array}{ccc}1& h/a& \cos \beta \\ {}\cos \gamma & k/b& \cos \alpha \\ {}\cos \beta & l/c& 1\end{array}\right|+\frac{l}{c}\left|\begin{array}{ccc}1& \cos \gamma & h/a\\ {}\cos \gamma & 1& k/b\\ {}\cos \beta & \cos \alpha & l/c\end{array}\right|} $$
  8. 8.

    This description is more convenient than an equivalent description, which in one direction reads ϕ(x) = A exp{2πi(x/λνt)}.

  9. 9.

    There are other modifications possible. For example, seven for Si, of which four are stable at room temperature and ambient pressure (see Landoldt-Börnstein 1982, 1987). Only Si I and α-Si are included in this book. Si III is face-centered cubic and a semimetal; Si IV is hexagonal diamond and is a medium-gap semiconductor (see Besson et al. 1987).

  10. 10.

    Aliphatic (from Greek aleiphar, “oil”) designates organic compounds in which the carbon atoms are linked in open chains.

  11. 11.

    An oligomer (from Greek oligos, “a few,” and meros “part”) is a molecule consisting of a small number of the repeat units of a polymer; a polymer (from Greek poly “many” and meros “part”) is a large molecule composed of many repeated subunits.

  12. 12.

    The organic semiconductors listed in Table 3 are widely used particularly due to their high carrier mobility and stability. Highest hole mobilities at room temperature were reported for pentacene (35 cm2/Vs; Jurchescu et al. 2004) and rubrene crystals (40 cm2/Vs; Takeya et al. 2007); CuPc, known as blue dye in artificial organic pigments, is used in organic FETs, and Alq3 is commonly applied in organic LEDs.

  13. 13.

    In thin films the tilt of the long molecule axis with respect to the a–b plane is much smaller (3° instead of 22° for pentacene); see Ambrosch-Draxl et al. 2009.

  14. 14.

    Poisson’s ratio denotes the negative quotient of transverse strain/longitudinal strain for uniaxial stress, generally yielding a positive quantity (typically 0.25 … 0.3): transverse tensile strain leads to longitudinal compressive strain and vice versa; see also Sect. 1.1 in chapter “Elasticity and Phonons.”

  15. 15.

    Nanocrystals of 2–10 nm diameter (corresponding to 10–50 atom diameters) contain some 102–105 atoms.

  16. 16.

    The surface of glasses, even at very high magnification, does not show any characteristic structure; after fracture, glasses show no preferred cleavage planes whatsoever.

  17. 17.

    The “chemical formula” using Tel/2 shows the symmetry of the Te binding and indicates that on the other side of each of the Te atoms another Ge atom is bound.

  18. 18.

    The largest unit cell experimentally found so far corresponds to the Al60.3Cu30.9Fe9.7 compound comprising nearly 5,000 atoms.

  19. 19.

    A natural quasicrystal, an Al63Cu24Fe13 alloy termed icosahedrite, has been found in a meteorite (Bindi et al. 2011).

  20. 20.

    For many quasicrystals a transition from brittle to ductile behavior was found at ~3/4 of the melting temperature (Dubois et al. 2000).

  21. 21.

    The relation is τ:1, τ:1, τ:1 for an icosahedral quasicrystal and, e.g., 2:1, 2:1, 2:1 for a cubic approximant (Pay Gómez and Lidin 2001).

  22. 22.

    Since the theoretical treatment of quasicrystals is challenging, often large approximants which are found to have similar properties are modeled instead.

  23. 23.

    To obtain a quasiperiodic instead of a just random tiling, matching rules for the arrangement of the two different tiles must be obeyed.

References

  • Abrikosov NK, Bankina VF, Poretskaya LV, Shelimova LE, Skudnova EV (1969) Semiconducting II-VI, IV-VI, and V-VI compounds. Plenum Press, New York

    Book  Google Scholar 

  • Adler D (1985) Chemistry and physics of covalent amorphous semiconductors. In: Adler D, Schwartz BB, Steele MC (eds) Physical properties of amorphous materials. Plenum Press, New York, p 5–103.

    Chapter  Google Scholar 

  • Agarwal VK (1988) Langmuir-Blodgett films. Phys Today 41:40

    Article  Google Scholar 

  • Allan DC, Joannopoulos JD, Pollard WB (1982) Electronic states and total energies in hydrogenated amorphous silicon. Phys Rev B 25:1065

    Article  ADS  Google Scholar 

  • Ambrosch-Draxl C, Nabok D, Puschnig P, Meisenbichler C (2009) The role of polymorphism in organic thin films: oligoacenes investigated from first principles. New J Phys 11:125010

    Article  Google Scholar 

  • Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames (2010) Image accessible at http://cmp.physics.iastate.edu/canfield/img/cbquasi1.jpg

  • Arushanov EK (1986) Crystal growth, characterization and application of II V compounds. Prog Cryst Growth Charact 13:1

    Article  Google Scholar 

  • Bacewicz R, Ciszek TF (1988) Preparation and characterization of some A I B II C V type semiconductors. Appl Phys Lett 52:1150

    Article  ADS  Google Scholar 

  • Barrett CS, Massalski TB (1980) Structure of metals, 3rd revised edn. Pergamon Press, Oxford/New York

    Google Scholar 

  • Bastard G, Brum JA (1986) Electronic states in semiconductor heterostructures. IEEE J Quantum Electron QE 22:1625

    Article  ADS  Google Scholar 

  • Belin-Ferré E (2004) Electronic structure of quasicrystalline compounds. J Non-Cryst Sol 334&335:323

    Article  Google Scholar 

  • Bell RJ, Dean P (1972) The structure of vitreous silica: validity of the random network theory. Philos Mag 25:1381

    Article  ADS  Google Scholar 

  • Bendersky L (1985) Quasicrystal with one-dimensional translational symmetry and a tenfold rotation axis. Phys Rev Lett 55:1461

    Article  ADS  Google Scholar 

  • Bernard JE, Zunger A (1988) Ordered-vacancy-compound semiconductors: pseudocubic CdIn2Se4. Phys Rev B 37:6835

    Article  ADS  Google Scholar 

  • Bertrand L, Cotte M, Stampanoni M, Thoury M, Marone F, Schöder S (2012) Development and trends in synchrotron studies of ancient and historical materials. Phys Rep 512:51

    Article  ADS  Google Scholar 

  • Besson JM, Mokhtari EH, Gonzalez J, Weill G (1987) Electrical properties of semimetallic silicon III and semiconductive silicon IV at ambient pressure. Phys Rev Lett 59:473

    Article  ADS  Google Scholar 

  • Bethe HA (1935) Statistical theory of superlattices. Proc Roy Soc A 150:552

    Article  ADS  MATH  Google Scholar 

  • Bhat R, Kapon E, Hwang DM, Koza MA, Yun CP (1988) Patterned quantum well heterostructures grown by OMCVD on non-planar substrates: applications to extremely narrow SQW lasers. J Cryst Growth 93:850

    Article  ADS  Google Scholar 

  • Bienenstock A (1985) Structural studies of amorphous materials. In: Adler D, Schwartz BB, Steele MC (eds) Physical properties of amorphous materials. Plenum Press, New York, p 171–200.

    Chapter  Google Scholar 

  • Bimberg D, Grundmann M, Ledentsov NN (1999) Quantum dot heterostructures. Wiley, Chichester

    Google Scholar 

  • Bindi L, Steinhardt PJ, Yao N, Lu PJ (2011) Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal. Am Mineral 96:928

    Article  ADS  Google Scholar 

  • Birss RR (1964) Symmetry and magnetism. North Holland, Amsterdam

    MATH  Google Scholar 

  • Blodgett KB (1935) Films built by depositing successive monomolecular layers on a solid surface. J Am Chem Soc 57:1007

    Article  Google Scholar 

  • Boolchand P (1985) Mössbauer spectroscopy—a rewarding probe of morphological structure of semiconducting glasses. In: Adler D, Schwartz BB, Steele MC (eds) Physical properties of amorphous materials. Plenum Press, New York, p 221–260.

    Chapter  Google Scholar 

  • Brown PJ, Forsyth JB (1973) The crystal structure of solids. Edwald Arnold, London

    Google Scholar 

  • Buerger MJ (1956) Elementary crystallography: an introduction to the fundamental geometrical features of crystals. Wiley, New York

    MATH  Google Scholar 

  • Cahn JW, Shechtman D, Gratias D (1986) Indexing of icosahedral quasiperiodic crystals. J Mater Res 1:13

    Article  ADS  Google Scholar 

  • Carlson AE, Zunger A, Wood DM (1985) Electronic structure of LiZnN: interstitial insertion rule. Phys Rev B 32:1386

    Article  ADS  Google Scholar 

  • Chen X, Lenhert S, Hirtz M, Nan L, Fuchs H, Lifeng C (2007) Langmuir–Blodgett patterning: a bottom–up way to build mesostructures over large areas. Acc Chem Res 40:393

    Article  Google Scholar 

  • Choi HJ (2012) Vapor–liquid–solid growth of semiconductor nanowires. In: Yi G-C (ed) Semiconductor nanostructures for optoelectronic devices. Springer, Berlin

    Google Scholar 

  • Costantini G, Rastelli A, Manzano C, Acosta-Diaz P, Songmuang R, Katsaros G, Schmidt OG, Kern K (2006) Interplay between thermodynamics and kinetics in the capping of InAs/GaAs(001) quantum dots. Phys Rev Lett 96:226106

    Article  ADS  Google Scholar 

  • Dandrea RG, Zunger A (1991) First-principles study of intervalley mixing: Ultrathin GaAs/GaP superlattices. Phys Rev B 43:8962

    Article  ADS  Google Scholar 

  • DiBenedetto AT (1967) The structure and properties of materials. McGraw-Hill, New York

    Google Scholar 

  • Dubois JM, Brunet P, Belin-Ferré E (2000) Potential applications of quasicrystalline materials. In: Belin-Ferré E et al. (eds) Quasicrystals: current topics. World Scientific, Singapore, p 498.

    Chapter  Google Scholar 

  • Dubois J-M (2005) Useful quasicrystals. World Scientific, Singapore

    Google Scholar 

  • Dubois J-M (2012) Properties and applications of quasicrystals and complex metallic alloys. Chem Soc Rev 41:6760

    Article  Google Scholar 

  • Ehrenreich H (1987) Electronic theory for materials science. Science 235:1029

    Article  ADS  Google Scholar 

  • Emery N, Hérold C, Marêché J-F, Lagrange P (2008) Synthesis and superconducting properties of CaC6. Sci Technol Adv Mater 9:044102

    Article  Google Scholar 

  • Etherington G, Wright AC, Wenzel JT, Dore JC, Clarke JH, Sinclair RN (1982) A neutron diffraction study of the structure of evaporated amorphous germanium. J Non-Cryst Sol 48:265

    Article  ADS  Google Scholar 

  • Freysoldt C, Pfanner G, Neugebauer J (2012) The dangling-bond defect in amorphous silicon: statistical random versus kinetically driven defect geometries. J Non-Cryst Sol 358:2063

    Article  ADS  Google Scholar 

  • Fritzsche H (2001) Development in understanding and controlling the Staebler-Wronski effect in a-Si:H. Annu Rev Mater Res 31:47

    Article  ADS  Google Scholar 

  • Galli G, Martin RM, Car R, Parrinello M (1988) Structural and electronic properties of amorphous carbon. Phys Rev Lett 62:555

    Google Scholar 

  • Gomyo A, Suzuki T, Kobayashi K, Kawata S, Hino I, Yuasa T (1987) Evidence for the existence of an ordered state in Ga0.5In0.5P grown by metalorganic vapor phase epitaxy and its relation to band-gap energy. Appl Phys Lett 50:673

    Article  ADS  Google Scholar 

  • Goncharova I (2012) University of Western Ontario. http://www.physics.uwo.ca/~lgonchar/artwork/photos/IonChanneling.jpg

  • Gossard AC (1986) Growth of microstructures by molecular beam epitaxy. IEEE J Quantum Electron QE 22:1649

    Article  ADS  Google Scholar 

  • Gustafsson A, Reinhardt F, Biasiol G, Kapon E (1995) Low-pressure organometallic chemical vapor deposition of quantum wires on V-grooved substrates. Appl Phys Lett 67:3673

    Article  ADS  Google Scholar 

  • Hahn T (ed) (1983) International tables for crystallography vol. A. D. Reidel Publication, Dordrecht

    MATH  Google Scholar 

  • Hanrath T (2012) Colloidal nanocrystal quantum dot assemblies as artificial solids. J Vac Sci Technol A 30:030802

    Google Scholar 

  • Häussler P, Nowak H, Haberkern R (2000) From the disordered via the quasicrystalline to the crystalline state. Mater Sci Eng 294–296:283

    Article  Google Scholar 

  • Hayes TM, Boyce JC (1985) Extended X-ray absorption fine structure spectroscopy. Solid State Phys 37:173

    Article  Google Scholar 

  • Hermann C (1949) Kristallographie in Räumen beliebiger Dimensionszahl. 1. Die Symmetrieoperationen. Acta Crystallogr 2:139 (Crystallography in spaces of arbitrary dimension. 1. The symmetry operation, in German)

    Article  Google Scholar 

  • Isu T, Jiang D-S, Ploog K (1987) Ultrathin-layer (AlAs)m (GaAs)m superlattices with m = 1,2,3 grown by molecular beam epitaxy. Appl Phys A 43:75

    Article  ADS  Google Scholar 

  • Jäckle J (1986) Models of the glass transition. Rep Prog Phys 49:171

    Article  ADS  Google Scholar 

  • Jaffe JE, Zunger A (1984) Electronic structure of the ternary pnictide semiconductors ZnSiP2, ZnGeP2, ZnSnP2, ZnSiAs2, and MgSiP2. Phys Rev B 30:741

    Article  ADS  Google Scholar 

  • James RW (1954) The optical principles of the diffraction of X-Rays. G. Bell & Sons, London

    Google Scholar 

  • Janot C (1994) Quasicrystals: a primer, 2nd edn. Oxford University Press, Oxford, UK, Reissued 2012

    Google Scholar 

  • Jarolimek K, de Groot RA, de Wijs GA, Zeman M (2009) First-principles study of hydrogenated amorphous silicon. Phys Rev B 79:155206

    Article  ADS  Google Scholar 

  • Jen HR, Cherng MJ, Stringfellow GB (1986) Ordered structures in GaAs0.5Sb0.5 alloys grown by organometallic vapor phase epitaxy. Appl Phys Lett 48:1603

    Article  ADS  Google Scholar 

  • Jurchescu OD, Baas J, Palstra TTM (2004) Effect of impurities on the mobility of single crystal pentacene. Appl Phys Lett 84:3061

    Article  ADS  Google Scholar 

  • Kalarasse F, Bennecer B (2006) Optical properties of the filled tetrahedral semiconductors LiZnX (X = N, P, and As). J Phys Chem Sol 67:1850

    Article  ADS  Google Scholar 

  • Kitaigorodskii AI (1973) Molecular crystals and molecules. Academic Press, New York

    Google Scholar 

  • Kittel C (2007) Introduction to solid state physics, 7th edn. Wiley, New York

    MATH  Google Scholar 

  • Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley, New York

    Google Scholar 

  • Kuan TS, Kuech TF, Wang WI, Wilkie EL (1985) Long-range order in Al x Ga1-x As. Phys Rev Lett 54:201

    Article  ADS  Google Scholar 

  • Kuan TS, Wang WI, Wilkie EL (1987) Long-range order in Al x Ga1-x As. Appl Phys Lett 51:51

    Article  ADS  Google Scholar 

  • Kuriyama K, Nakamura F (1987) Electrical transport properties and crystal structure of LiZnAs. Phys Rev B 36:4439

    Article  ADS  Google Scholar 

  • Landoldt-Börnstein (1982) New series, III. 17a and b. Madelung O, Schulz M, Weiss H (eds) Springer, Berlin

    Google Scholar 

  • Landoldt-Börnstein (1987) New series, III, 22. Madelung O, Schulz M (eds) Springer, Berlin

    Google Scholar 

  • Langmuir I (1920) The mechanism of the surface phenomena of flotation. Trans Faraday Soc 15:62

    Article  Google Scholar 

  • Levine D, Steinhardt PJ (1984) Quasicrystals: a new class of ordered structures. Phys Rev Lett 53:2477

    Article  ADS  Google Scholar 

  • Li JJ, Wang A, Ghuo W, Keay JC, Mishima TD, Johnson MB, Peng X (2003) Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J Am Chem Soc 125:12567

    Article  Google Scholar 

  • Maciá E (2006) The role of aperiodic order in science and technology. Rep Prog Phys 69:397

    Article  ADS  Google Scholar 

  • Mandelbrot BB (1981) The fractal geometry of nature. Freeman, San Francisco

    Google Scholar 

  • Márquez J, Geelhaar L, Jacobi K (2001) Atomically resolved structure of InAs quantum dots. Appl Phys Lett 78:2309

    Article  ADS  Google Scholar 

  • Mayou D, Berger C, Cyrot-Lackmann F, Klein T, Lanco P (1993) Evidence for unconventional electronic transport in quasicrystals. Phys Rev Lett 70:3915

    Article  ADS  Google Scholar 

  • Menelle A, Bellissent R (1986) EXAFS and neutron scattering determination of local order in a-Si:H. In: Engström O (ed) Proceedings of international conference on the physics of semiconductors. World Scientific, Stockholm, p 1049–1052

    Google Scholar 

  • Miller A, MacKinnon A, Weaire D (1981) Beyond the binaries – the chalcopyrite and related semiconducting compounds. In: Ehrenreich H, Seitz F, Turnbull D (eds) Solid state physics, vol 36. Academic Press, New York

    Google Scholar 

  • Moss SC, Graczyk JF (1970) In: Proceedings of 10th international conference on semiconductors, Washington DC, p 658

    Google Scholar 

  • Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • MPI Halle (2007): Max Planck Institute of Microstructure Physics, Halle, Germany. The image is accessible at http://www.mpi-halle.mpg.de/department2/research-areas/nanowires-nanoobjects/semiconductor-nanowires/abstract/si-nanowires-by-cvd-and-ebe/

  • Murray C, Kagan C, Bawendi M (2000) Synthesis and characterization of monodisperse nanocrystals and closed-packed nanocrystal assemblies. Ann Rev Mater Sci 30:545

    Article  ADS  Google Scholar 

  • Nakayama H, Fujita H (1985) Direct observation of an ordered phase in a disordered In1-xGaxAs alloy. In: Fujimoto M (ed) Gallium arsenide and related compounds 1985. Institute of physics conference series, vol 79. IOP, Adam Hilger, Boston, p 289–294

    Google Scholar 

  • Newnham RE (1975) Structure–property relations. Springer, Berlin

    Book  Google Scholar 

  • Ovshinsky SR (1976) Lone-pair relationships and the origin of excited states in amorphous chalcogenides. AIP Conf Proc 31:31

    Article  ADS  Google Scholar 

  • Pantelides ST (1987) Defect dynamics and the Staebler-Wronski effect in hydrogenated amorphous silicon. Phys Rev B 36:3479

    Article  ADS  Google Scholar 

  • Parthé E (1964) Crystal chemistry of tetrahedral structures. Gordon & Breach, New York

    Google Scholar 

  • Parthé E (1972) Cristallochimie des structures tétraédriques. Gordon & Breach, New York

    Google Scholar 

  • Pay Gómez C, Lidin S (2001) Structure of Ca13Cd76: A novel approximant to the MCd5.7 quasicrystals (M = Ca, Yb). Angewandte Chemie 40:4037

    Article  Google Scholar 

  • Penrose R (1974) Role of aesthetics in pure and applied research. Bull Inst Math Appl 10:266

    Google Scholar 

  • Petroff PM, Gossard AC, Wiegmann W, Savage A (1978) Crystal growth kinetics in (GaAs)n − (AlAs)m superlattices deposited by molecular beam epitaxy: I. Growth on singular (100)GaAs substrates. J Cryst Growth 44:5

    Google Scholar 

  • Petroff PM, Gossard AC, Savage A, Wiegmann W (1979) Molecular beam epitaxy of Ge and Ga1−xAlxAs ultra thin film superlattices. J Cryst Growth 46:172

    Article  ADS  Google Scholar 

  • Phillips JC (1980) Comments Solid State Phys 9:191

    Google Scholar 

  • Pinczolits M, Springholz G, Bauer G (1998) Direct formation of self-assembled quantum dots under tensile strain by heteroepitaxy of PbSe on PbTe (111). Appl Phys Lett 73:250

    Article  ADS  Google Scholar 

  • Polk DE (1971) Structural model for amorphous silicon and germanium. J Non-Cryst Sol 5:365

    Article  ADS  Google Scholar 

  • Rastelli A, Kummer M, von Känel H (2001) Reversible shape evolution of Ge islands on Si(001). Phys Rev Lett 87:256101

    Article  ADS  Google Scholar 

  • Richardson TH (ed) (2000) Functional organic and polymeric materials. Wiley, New York

    Google Scholar 

  • Roberts GG (1985) An applied science perspective of Langmuir-Blodgett films. Adv Phys 34:475

    Article  ADS  Google Scholar 

  • Runnels LK (1967) Phase transition of a Bethe lattice gas of hard molecules. J Math Phys 8:2081

    Article  ADS  Google Scholar 

  • Shay L, Wernick JH (1974) Ternary chalcopyrite semiconductors: growth, electronic properties, and applications. Pergamon Press, Oxford

    Google Scholar 

  • Shechtman D, Blech I, Gratias D, Cahn JW (1984) Metallic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 53:1951

    Article  ADS  Google Scholar 

  • Singh J, Shimakawa K (2003) Advances in amorphous semiconductors. Taylor and Francis, London

    Book  Google Scholar 

  • Sommer AH (1968) Photoemissive materials: preparation, properties, and uses. Wiley, New York

    Google Scholar 

  • Srivastava GP, Martins JL, Zunger A (1985) Atomic structure and ordering in semiconductor alloys. Phys Rev B 31:2561

    Article  ADS  Google Scholar 

  • Steinhardt P, Alben R, Weaire D (1974) Relaxed continuous random network models: (I). Structural characteristics. J Non-Cryst Sol 15:199

    Article  ADS  Google Scholar 

  • Steinhardt PJ (1987) Icosahedral solids: a new phase of matter? Science 238:1242

    Article  ADS  Google Scholar 

  • Stern EA (1978) Structure determination by X-ray absorption. Contemp Phys 19:289

    Article  ADS  Google Scholar 

  • Stern EA (1985) EXAFS of disordered systems. In: Adler D, Schwartz BB, Steele MC (eds) Physical properties of amorphous materials. Plenum Press, New York p 201–219

    Chapter  Google Scholar 

  • Street RA (1991) Hydrogenated amorphous silicon. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Suck J-B, Schreiber M, Häussler P (eds) (2002) Quasicrystals: an introduction to structure, physical properties and applications. Springer, Berlin

    Google Scholar 

  • Takeya J, Yamagishi M, Tominari Y, Hirahara R, Nakazawa Y, Nishikawa T, Kawase T, Shimoda T, Ogawa S (2007) Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl Phys Lett 90:102120

    Article  ADS  Google Scholar 

  • Temkin RJ, Paul W, Connell GAN (1973) Amorphous germanium II. Structural properties. Adv Phys 22:581

    Article  ADS  Google Scholar 

  • Temkin RJ (1974) Comparison of the structure of amorphous Ge and GaAs. Sol State Commun 15:1325

    Article  ADS  Google Scholar 

  • Wagner RS, Ellis WC (1964) Vapor–liquid-solid mechanism of single crystal growth. Appl Phys Lett 4:89

    Article  ADS  Google Scholar 

  • Waire D, Ashby MF, Logan J, Weins MJ (1971) On the use of pair potentials to calculate the properties of amorphous metals. Acta Metall 19:779

    Article  Google Scholar 

  • Wang LG, Kratzer P, Scheffler M, Moll N (1999) Formation and stability of self-assembled coherent islands in highly mismatched heteroepitaxy. Phys Rev Lett 82:4042

    Article  ADS  Google Scholar 

  • Wang X-L, Voliotis V (2006) Epitaxial growth and optical properties of semiconductor quantum wires. J Appl Phys 99:121301

    Article  ADS  Google Scholar 

  • Warren BE (1990) X-ray diffraction. Dover, New York

    Google Scholar 

  • Wegscheider W, Pfeiffer LN, Dignam MM, Pinczuk A, West KW, McCall SL, Hull R (1993) Appl Phys Lett 71:4071

    Article  Google Scholar 

  • Wells AF (2012) Structural inorganic chemistry, 5th edn. Oxford University Press, Oxford

    Google Scholar 

  • Whittingham MS, Jacobson AJ (eds) (1982) Intercalation chemistry. Academic Press, New York

    Google Scholar 

  • Woggon U (1997) Optical properties of semiconductor quantum dots. Springer, Berlin

    Google Scholar 

  • Wood DM, Zunger A (1988) Epitaxial effects on coherent phase diagrams of alloys. Phys Rev Lett 61:1501

    Article  ADS  Google Scholar 

  • Wood DM, Wie S-H, Zunger A (1988) Stability and electronic structure of ultrathin [001] (GaAs)m(AlAs)m superlattices. Phys Rev B 37:1342

    Article  ADS  Google Scholar 

  • Xu T, Zhou L, Wang Y, Özcan AS, Ludwig KF (2007) GaN quantum dot superlattices grown by molecular beam epitaxy at high temperature. J Appl Phys 102:073517

    Article  ADS  Google Scholar 

  • Yu LH, Yao KL, Liu ZL (2004) Electronic structures of filled tetrahedral semiconductors LiMgN and LiZnN: conduction band distortion. Phys B 353:278

    Article  ADS  Google Scholar 

  • Zachariasen WH (1932) The atomic arrangement in glass. J Am Chem Soc 54:3841

    Article  Google Scholar 

  • Zachariasen WH (2004) Theory of X-ray diffraction in crystals. Dover, New York

    Google Scholar 

  • Zunger A (1985) Ternary semiconductors and ordered pseudobinary alloys: electronic structure and predictions of new materials. Int J Quant Chem 28:629

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Böer, K.W., Pohl, U.W. (2018). The Structure of Semiconductors. In: Semiconductor Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-69150-3_3

Download citation

Publish with us

Policies and ethics