Skip to main content

Excitons

  • Reference work entry
  • First Online:
Semiconductor Physics

Abstract

Optical band-to-band absorption can produce an electron and a hole in close proximity which attract each other via Coulomb interaction and can form a hydrogen-like bond state, the exciton. The spectrum of free Wannier–Mott excitons in bulk crystals is described by a Rydberg series with an effective Rydberg constant given by the reduced effective mass and the dielectric constant. A small dielectric constant and large effective mass yield a localized Frenkel exciton resembling an excited atomic state. Excitons increase the absorption slightly below the band edge significantly. The interaction of photons and excitons creates a mixed state, the exciton–polariton , with photon-like and exciton-like dispersion branches. An exciton can bind another exciton or carriers to form molecules or higher associates of excitons. Free charged excitons (trions ) and biexcitons have a small binding energy with respect to the exciton state. The binding energy of all excitonic quasiparticles is significantly enhanced in low-dimensional semiconductors. Basic features of confined excitons with strongest transitions between electron and hole states of equal principal quantum numbers remain similar. The analysis of exciton spectra provides valuable information about the electronic structure of the semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 729.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This causes the breakdown of the adiabatic approximation. The error in this approximation is on the order of the fourth root of the mass ratio. For hydrogen this is \( {\left({m}_n/{M}_{\mathrm{H}}\right)}^{1/4}\cong 10\% \) and is usually acceptable. For excitons, however, the error is on the order of 1 and is no longer acceptable. This is relevant for the estimation of exciton molecule formation discussed in Sect. 1.4.

  2. 2.

    When a quasi-free charge carrier (electron or hole) moves through a crystal with strong lattice polarization, it is surrounded by a polarization cloud. Carrier plus polarization form a polaron, a quasiparticle with an increased effective mass (see Sect. 1.2 of chapter “Carrier-Transport Equations”).

  3. 3.

    It is, however, influenced by the gradient of an electric field or by strain; see, e.g., Tamor and Wolfe 1980.

  4. 4.

    The ionization energy is also referred to as binding energy or Rydberg energy.

  5. 5.

    \( {\phi}_n(0)\ne 0 \) applies only for S states.

  6. 6.

    Strictly, such transitions cannot occur at k = 0; however, a slight shift because of the finite momentum of the photon permits the optical transition to occur because of a weak electric quadrupole coupling (Elliott 1961). Such transitions can also be observed under a high electric field using modulation spectroscopy (Washington et al. 1977). Dipole-forbidden transitions are easily detected with Raman scattering (Sect. 1.3) or two-photon absorption (for Cu2O, see Uihlein et al. 1981), which follow different selection rules.

  7. 7.

    With a correspondingly large exciton Bohr radius of 1.04 μm for n = 25, compared to ~1 nm for n = 1.

  8. 8.

    The analysis of the measured reflection spectrum as a function of the wavelength and incident angle is rather involved. A relatively simple method for measuring the central part of the exciton–polariton spectrum in transmission through a prismatic crystal was used by Broser et al. (1981) (see Fig. 13).

  9. 9.

    A state close to an actual biexciton state (Sect. 1.4) which immediately decays into other states.

  10. 10.

    Deviations from a pure quadratic dependence are due to the short radiative lifetime for the involved species in direct-bandgap semiconductors, preventing a thermal equilibrium of the population.

  11. 11.

    Still a significant broadening of exciton transitions (of single quantum dots) well above the natural linewidth is observed due to the interaction of the quantum dot with its environment. The interaction with acoustic phonons (deformation potential coupling) and optical phonons (Fröhlich coupling) leads to broad transitions at increased temperature (Rudin et al. 1990); in addition, randomly fluctuating electrical fields of charged defects in the vicinity of the dots lead to a spectral jitter of the transitions on a very short time scale (spectral diffusion) even at low temperature (Türck et al. 2000).

References

  • Akimoto O, Hanamura E (1972) Excitonic molecule. I. Calculation of the binding energy. J Phys Soc Jpn 33:1537

    Article  ADS  Google Scholar 

  • Akiyama H (1998) One-dimensional excitons in GaAs quantum wires. J Phys Condens Matter 10:3095

    Article  ADS  Google Scholar 

  • Altarelli M, Bachelet G, Del Sole R (1979) Theory of exciton effects in semiconductor surface spectroscopy. J Vac Sci Technol 16:1370

    Article  ADS  Google Scholar 

  • Astakhov GV, Kochereshko VP, Yakovlev DR, Ossau W, Nürnberger J, Faschinger W, Landwehr G, Wojtowicz T, Karczewski G, Kossut J (2002a) Optical method for the determination of carrier density in modulation-doped quantum wells. Phys Rev B 65:115310

    Article  ADS  Google Scholar 

  • Astakhov GV, Yakovlev DR, Kochereshko VP, Ossau W, Faschinger W, Puls J, Henneberger F, Crooker SA, McCulloch Q, Wolverson D, Gippius NA, Waag A (2002b) Binding energy of charged excitons in ZnSe-based quantum wells. Phys Rev B 65:165335

    Article  ADS  Google Scholar 

  • Bajaj KK, Reynolds DC (1987) An overview of optical characterization of semiconductor structures and alloys. Proc SPIE 0794:2

    Article  ADS  Google Scholar 

  • Baldereschi A, Lipari NO (1973) Spherical model of shallow acceptor states in semiconductors. Phys Rev B 8:2697

    Article  ADS  Google Scholar 

  • Bar-Joseph I (2005) Trions in GaAs quantum wells. Semicond Sci Technol 20:R29

    Article  ADS  Google Scholar 

  • Bassani F, Pastori-Parravicini G (1975) Electronic states and optical transitions in solids. Pergamon Press, Oxford

    Google Scholar 

  • Beinikhes IL, Kogan ShM (1985) Influence of valence band degeneracy on the fundamental optical absorption in direct-gap semiconductors in the region of exciton effects. Sov Phys JETP 62:415

    Google Scholar 

  • Birkedal D, Singh J, Lyssenko VG, Erland J, Hvam JM (1996) Binding of quasi-two-dimensional biexcitons. Phys Rev Lett 76:672

    Article  ADS  Google Scholar 

  • Brinkman WF, Rice TM, Bell B (1973) The excitonic molecule. Phys Rev B 8:1570

    Article  ADS  Google Scholar 

  • Broser I, Broser R, Beckmann E, Birkicht E (1981) Thin prism refraction: a new direct method of polariton spectroscopy. Solid State Commun 39:1209

    Article  ADS  Google Scholar 

  • Cavenett BC (1980) Optical detection of exciton resonances in semiconductors. J Phys Soc Jpn 49(Suppl A):611

    Google Scholar 

  • Cavenett BC (1984) Triplet exciton recombination in amorphous and crystalline semiconductors. J Lumin 31/32:369

    Article  Google Scholar 

  • Cho K (1979) Internal structure of excitons. In: Cho K (ed) Excitons. Springer, Berlin, p 15

    Chapter  Google Scholar 

  • Collins RT, Vina L, Wang WI, Mailhiot C, Smith DL (1987) Electronic properties of quantum wells in perturbing fields. Proc SPIE 0792:2

    Article  ADS  Google Scholar 

  • Compaan A (1975) Surface damage effects on allowed and forbidden phonon Raman scattering in cuprous oxide. Solid State Commun 16:293

    Article  ADS  Google Scholar 

  • Davies JJ, Cox RT, Nicholls JE (1984) Optically detected magnetic resonance of the triplet state of copper-center – donor pairs in CdS. Phys Rev B 30:4516

    Article  ADS  Google Scholar 

  • Davydov VYu, Subashiev AV, Cheng TS, Foxon CT, Goncharuk IN, Smirnov AN, Zolotareva RV, Lundin WV (1997) Surface polariton Raman spectroscopy in cubic GaN epitaxial layers. Mater Sci Forum 264:1371

    Google Scholar 

  • Dean PJ, Thomas DG (1966) Intrinsic absorption-edge spectrum of gallium phosphide. Phys Rev 150:690

    Article  ADS  Google Scholar 

  • Denisov MM, Makarov VP (1973) Longitudinal and transverse excitons in semiconductors. Phys Status Solidi B 56:9

    Article  ADS  Google Scholar 

  • Denisov VN, Mavrin BN, Podobedov VB (1987) Hyper-Raman scattering by vibrational excitations in crystals, glasses and liquids. Phys Rep 151:1

    Article  ADS  Google Scholar 

  • Dingle R, Wiegmann W, Henry CH (1974) Quantum states of confined carriers in very thin AlxGa1-xAs-GaAs-AlxGa1-xAs heterostructures. Phys Rev Lett 33:827

    Article  ADS  Google Scholar 

  • Elliott RJ (1961) Symmetry of excitons in Cu2O. Phys Rev 124:340

    Article  ADS  Google Scholar 

  • Esser A, Zimmermann R, Runge E (2001) Theory of trion spectra in semiconductor nanostructures. Phys Status Solidi B 227:317

    Article  ADS  Google Scholar 

  • Filinov AV, Riva C, Peeters FM, Lozovik YuE, Bonitz M (2005) Influence of well-width fluctuations on the binding energy of excitons, charged excitons, and biexcitons in GaAs-based quantum wells. Phys Rev B 70:035323

    Google Scholar 

  • Fischer B, Lagois J (1979) Surface exciton polaritons. In: Cho K (ed) Excitons. Springer, Berlin, p 183

    Chapter  Google Scholar 

  • Flohrer J, Jahne E, Porsch M (1979) Energy levels of A and B excitons in wurtzite-type semiconductors with account of electron-hole exchange interaction effects. Phys Status Solidi B 91:467

    Article  ADS  Google Scholar 

  • Frenkel JI (1931) On the transformation of light into heat in solids II. Phys Rev 37:1276

    Article  ADS  MATH  Google Scholar 

  • Fröhlich H (1954) Electrons in lattice fields. Adv Phys 3:325

    Article  ADS  MATH  Google Scholar 

  • Fröhlich D (1981) Aspects of nonlinear spectroscopy. In: Treusch J (ed) Festkörperprobleme. Advances in solid state physics, vol 21. Vieweg, Braunschweig, p 363

    Google Scholar 

  • García-Cristóbal A, Cantarero A, Trallero-Giner C, Cardona M (1998) Resonant hyper-Raman scattering in semiconductors. Phys Rev B 58:10443

    Article  ADS  Google Scholar 

  • George GA, Morris GC (1970) The absorption, fluorescence and phosphorescence of single crystals of 1,2,4,5-tetrachlorobenzene and 1,4-dichlorobenzene at low temperatures. Mol Cryst Liq Cryst 11:61

    Article  Google Scholar 

  • Gerlach B (1974) Bound states in electron-exciton collisions. Phys Status Solidi B 63:459

    Article  ADS  Google Scholar 

  • Giblin J, Vietmeyer F, McDonald MP, Kuno M (2011) Single nanowire extinction spectroscopy. Nano Lett 11:3307

    Article  ADS  Google Scholar 

  • Girlanda R, Savasta S, Quattropani A (1994) Theory of exciton-polaritons in semiconductors with nearly degenerate exciton levels. Solid State Commun 90:267

    Article  ADS  Google Scholar 

  • Gislason HP, Monemar B, Dean PJ, Herbert DC, Depinna S, Cavenett BC, Killoran N (1982) Photoluminescence studies of the 1.911-eV Cu-related complex in GaP. Phys Rev B 26:827

    Article  ADS  Google Scholar 

  • Gourley PL, Wolfe JP (1978) Spatial condensation of strain-confined excitons and excitonic molecules into an electron-hole liquid in silicon. Phys Rev Lett 40:526. And: Properties of the electron-hole liquid in Si: zero stress to the high-stress limit. Phys Rev B 24:5970 (1981)

    Article  ADS  Google Scholar 

  • Grosmann M (1963) The effect of perturbations on the excitonic spectrum of cuprous oxide. In: Kuper CG, Whitfield GD (eds) Polarons and excitons. Oliver and Boyd, London, p 373

    Google Scholar 

  • Grundmann M, Bimberg D (1988) Anisotropy effects on excitonic properties in realistic quantum wells. Phys Rev B 38:13486

    Article  ADS  Google Scholar 

  • Haken H (1963) Theory of excitons II. In: Kuper CG, Whitfield GD (eds) Polarons and excitons. Oliver and Boyd, Edinburgh, p 295

    Google Scholar 

  • Haken H (1976) Quantum field theory of solids. North Holland Publishing, Amsterdam

    Google Scholar 

  • Haken H, Nikitine S (eds) (1975) Excitons at high densities. Springer tracts in modern physics. Springer, New York

    Google Scholar 

  • Hanamura E (1976) Excitonic molecules. In: Seraphin BO (ed) Optical properties of solids. North Holland Publishing, Amsterdam, pp 81–142

    Google Scholar 

  • Hanamura E, Haug H (1977) Condensation effects of excitons. Phys Rep 33:209

    Article  ADS  Google Scholar 

  • Hönerlage B, Lévy R, Grun JB, Klingshirn C, Bohnert K (1985) The dispersion of excitons, polaritons and biexcitons in direct-gap semiconductors. Phys Rep 124:161

    Article  ADS  Google Scholar 

  • Hopfield JJ, Thomas DG (1963) Theoretical and experimental effects of spatial dispersion on the optical properties of crystals. Phys Rev 132:563

    Article  ADS  Google Scholar 

  • Kabler MN (1964) Low-temperature recombination luminescence in alkali halide crystals. Phys Rev 136:A1296

    Article  ADS  Google Scholar 

  • Kamtekar KT, Monkman AP, Bryce MR (2010) Recent advances in white organic light-emitting materials and devices (WOLEDs). Adv Mater 22:572

    Article  Google Scholar 

  • Kato Y, Yu CI, Goto T (1970) The effect of exchange interaction on the exciton bands in CuCl-CuBr solid solutions. J Phys Soc Jpn 28:104

    Article  ADS  Google Scholar 

  • Kazimierczuk T, Fröhlich D, Scheel S, Stolz H, Bayer M (2014) Giant Rydberg excitons in the copper oxide Cu2O. Nature 514:343

    Article  ADS  Google Scholar 

  • Kittel C (1963) Quantum theory of solids. Wiley, New York, p 131

    Google Scholar 

  • Kittel C (1966) Introduction to solid state physics. Wiley, New York

    MATH  Google Scholar 

  • Knox RS (1984) Introduction to exciton physics. In: DiBartolo B, Danko J (eds) Collective excitations in solids. Plenum Press, New York, p 183

    Google Scholar 

  • Koteles ES, Jagannath C, Lee J, Vassell MO (1987) Uniaxial stress as a probe of valence subband mixing in semiconductor quantum wells. Proc SPIE 0792:168

    Article  ADS  Google Scholar 

  • Kudlek G, Presser N, Pohl UW, Gutowski J, Lilja J, Kuusisto E, Imai K, Pessa M, Hingerl K, Sitter A (1992) Exciton complexes in ZnSe layers: a tool for probing the strain distribution. J Cryst Growth 117:309

    Article  ADS  Google Scholar 

  • Kulakovskii VD, Lysenko VG, Timofeev VB (1985) Excitonic molecules in semiconductors. Sov Phys Usp 28:735

    Article  ADS  Google Scholar 

  • Lambrecht WRL, Rodina AV, Limpijumnong S, Segall B, Meyer BK (2002) Valence-band ordering and magneto-optic exciton fine structure in ZnO. Phys Rev B 65:075207

    Article  ADS  Google Scholar 

  • Lampert MA (1958) Mobile and immobile effective-mass-particle complexes in nonmetallic solids. Phys Rev Lett 1:450

    Article  ADS  Google Scholar 

  • Landau LD (1933) Electron motion in crystal lattices. Phys Z Sowjetunion 3:664

    Google Scholar 

  • Loudon R (1963) Theory of first-order Raman effect in crystals. Proc R Soc Lond A275:218

    Article  ADS  Google Scholar 

  • MacFarlane GG, McLean TP, Quarrington JE, Roberts V (1957) Fine structure in the absorption-edge spectrum of Ge. Phys Rev 108:1377

    Article  ADS  Google Scholar 

  • Mahan GD, Hopfield JJ (1964) Piezoelectric polaron effects in CdS. Phys Rev Lett 12:241

    Article  ADS  Google Scholar 

  • McLean TP (1963) Excitons in germanium. In: Kuper CG, Whitfield GD (eds) Polarons and excitons. Oliver and Boyd, London, p 367

    Google Scholar 

  • Miller RC, Kleinman DA (1985) Excitons in GaAs quantum wells. J Lumin 30:520

    Article  Google Scholar 

  • Miller DAB, Chemla DS, Damen TC, Gossard AC, Wiegmann W, Wood TH, Burrus CA (1985) Electric field dependence of optical absorption near the band gap of quantum-well structures. Phys Rev B 32:1043

    Article  ADS  Google Scholar 

  • Moskalenko SA (1958) The theory of Mott exciton in alkali-halide crystals. Zh Opt Spektrosk (USSR) 5:147

    ADS  Google Scholar 

  • Mott NF (1938) Conduction in polar crystals. II. The conduction band and ultra-violet absorption of alkali-halide crystals. Trans Faraday Soc 34:500

    Article  Google Scholar 

  • Muljarov EA, Zhukov EA, Dneprovskii VS, Masumoto Y (2000) Dielectrically enhanced excitons in semiconductor-insulator quantum wires: theory and experiment. Phys Rev B 62:7420

    Article  ADS  Google Scholar 

  • Ogawa T, Takagahara T (1991) Optical absorption and Sommerfeld factors of one-dimensional semiconductors: an exact treatment of excitonic effects. Phys Rev B 44:8138

    Article  ADS  Google Scholar 

  • Phillips RT, Lovering DJ, Denton GJ, Smith GW (1992) Biexciton creation and recombination in a GaAs quantum well. Phys Rev B 45:4308

    Article  ADS  Google Scholar 

  • Ploog K, Döhler GH (1983) Compositional and doping superlattices in III-V semiconductors. Adv Phys 32:285

    Article  ADS  Google Scholar 

  • Pohl UW (2008) InAs/GaAs quantum dots with multimodal size distribution. In: Wang ZM (ed) Self-assembled quantum dots. Springer, New York, p 43

    Chapter  Google Scholar 

  • Pope M, Swenberg CE (1982) Electronic processes in organic crystals. Oxford University Press, Oxford, UK

    Google Scholar 

  • Reynolds DC, Collins TC (1981) Excitons: their properties and uses. Academic Press, New York

    Google Scholar 

  • Rodina AV, Dietrich M, Göldner A, Eckey L, Hoffmann A, Efros AL, Rosen M, Meyer BK (2001) Free excitons in wurtzite GaN. Phys Rev B 64:115204

    Article  ADS  Google Scholar 

  • Rodt S, Schliwa A, Pötschke K, Guffarth F, Bimberg D (2005) Correlation of structural and few-particle properties of self-organized InAs∕GaAs quantum dots. Phys Rev B 71:155325

    Article  ADS  Google Scholar 

  • Rössler U (1979) Fine structure, lineshape, and dispersion of Wannier excitons. In: Treusch J (ed) Festkörperprobleme. Advances in solid state physics, vol 19. Vieweg, Braunschweig, p 77

    Google Scholar 

  • Rudin S, Reinecke TL, Segall B (1990) Temperature-dependent exciton linewidths in semiconductors. Phys Rev B 42:11218

    Article  ADS  Google Scholar 

  • Scarani V, Bechmann-Pasquinucci H, Cerf NJ, Dušek M, Lütkenhaus N, Peev M (2009) The security of practical quantum key distribution. Rev Mod Phys 81:1301

    Article  ADS  Google Scholar 

  • Seguin R, Schliwa A, Rodt S, Pötschke K, Pohl UW, Bimberg D (2005) Size-dependent exciton fine-structure splitting in self-organized InAs/GaAs quantum dots. Phys Rev Lett 95:257402

    Article  ADS  Google Scholar 

  • Shields AJ (2007) Semiconductor quantum light sources. Nat Photonics 1:215

    Article  ADS  Google Scholar 

  • Shields AJ, Pepper M, Ritchie DA, Simmons MY (1995a) Influence of excess electrons and magnetic fields on Mott-Wannier excitons in GaAs quantum wells. Adv Phys 44:47

    Article  ADS  Google Scholar 

  • Shields AJ, Osborne JL, Simmons MY, Pepper M, Ritchie DA (1995b) Magneto-optical spectroscopy of positively charged excitons in GaAs quantum wells. Phys Rev B 52:R5523

    Article  ADS  Google Scholar 

  • Shinada M, Sugano S (1966) Interband optical transitions in extremely anisotropic semiconductors. I. Bound and unbound exciton absorption. J Phys Soc Jpn 21:1936

    Article  ADS  Google Scholar 

  • Shinar J (ed) (2004) Organic light-emitting devices: a survey. Springer, New York

    Google Scholar 

  • Singh J (1984) The dynamics of excitons. In: Ehrenreich H, Turnbull D (eds) Solid state physics, vol 38. p 295, Academic Press, Orlando/New York

    Google Scholar 

  • Singh J, Birkedal D, Lyssenko VG, Hvam JM (1996) Binding energy of two-dimensional biexcitons. Phys Rev B 53:15909

    Article  ADS  Google Scholar 

  • Solovyev VV, Kukushkin IV (2009) Measurement of binding energy of negatively charged excitons in GaAs/Al0.3Ga0.7As quantum wells. Phys Rev B 79:233306

    Article  ADS  Google Scholar 

  • Someya T, Akiyama H, Sakaki H (1996) Enhanced binding energy of one-dimensional excitons in quantum wires. Phys Rev Lett 76:2965

    Article  ADS  Google Scholar 

  • Song KS, Williams RT (1993) Self-trapped excitons. Springer series in solid-state sciences, vol 105. Springer, Berlin

    Google Scholar 

  • Stébé B, Ainane A (1989) Ground state energy and optical absorption of excitonic trions in two dimensional semiconductors. Superlattice Microstruct 5:545

    Article  ADS  Google Scholar 

  • Tamor MA, Wolfe JP (1980) Drift and diffusion of free excitons in Si. Phys Rev Lett 44:1703

    Article  ADS  Google Scholar 

  • Thewalt MLW, Rostworowski JA (1978) Biexcitons in Si. Solid State Commun 25:991

    Article  ADS  Google Scholar 

  • Thomas GA, Rice TM (1977) Trions, molecules and excitons above the Mott density in Ge. Solid State Commun 23:359

    Article  ADS  Google Scholar 

  • Thomas GA, Timofeev VB (1980) A review of N = 1 to ∞ particle complexes in semiconductors. In: Moss TS, Balkanski M (eds) Handbook on semiconductors, vol 2. North Holland Publishing, Amsterdam, p 45

    Google Scholar 

  • Tomiki T (1969) Optical constants and exciton states in KCl single crystals III. The spectra of conductivity and of energy loss. J Phys Soc Jpn 26:738

    Article  ADS  Google Scholar 

  • Toyozawa Y (1980) Electrons, holes, and excitons in deformable lattice. In: Kubo R, Hanamura I (eds) Excitons. Springer, Berlin

    Google Scholar 

  • Türck V, Rodt S, Stier O, Heitz R, Engelhardt R, Pohl UW, Bimberg D, Steingrüber R (2000) Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots. Phys Rev B 61:9944

    Article  ADS  Google Scholar 

  • Ueta M, Nishina Y (eds) (1976) Physics of highly excited states in solids. Lecture notes in physics, vol 57. Springer, New York

    Google Scholar 

  • Uihlein C, Fröhlich D, Kenklies R (1981) Investigation of exciton fine structure in Cu2O. Phys Rev B 23:2731

    Article  ADS  Google Scholar 

  • Vogl P (1976) Microscopic theory of electron-phonon interaction in insulators or semiconductors. Phys Rev B 13:694

    Article  ADS  Google Scholar 

  • Vouilloz F, Oberli DY, Dupertuis M-A, Gustafsson A, Reinhardt F, Kapon E (1997) Polarization anisotropy and valence band mixing in semiconductor quantum wires. Phys Rev Lett 78:1580

    Article  ADS  Google Scholar 

  • Vouilloz F, Oberli DY, Dupertuis M-A, Gustafsson A, Reinhardt F, Kapon E (1998) Effect of lateral confinement on valence-band mixing and polarization anisotropy in quantum wires. Phys Rev B 57:12378

    Article  ADS  Google Scholar 

  • Wang X-L, Voliotis V (2006) Epitaxial growth and optical properties of semiconductor quantum wires. J Appl Phys 99:121301

    Article  ADS  Google Scholar 

  • Wannier GH (1937) The structure of electronic excitation levels in insulating crystals. Phys Rev 52:191

    Article  ADS  MATH  Google Scholar 

  • Washington MA, Genack AZ, Cummins HZ, Bruce RH, Compaan A, Forman RA (1977) Spectroscopy of excited yellow exciton states in Cu2O by forbidden resonant Raman scattering. Phys Rev B 15:2145

    Article  ADS  Google Scholar 

  • Weisbuch C, Benisty H, Houdré R (2000) Overview of fundamentals and applications of electrons, excitons and photons in confined structures. J Lumin 85:271

    Article  Google Scholar 

  • Wicksted J, Matsushita M, Cummins HZ, Shigenari T, Lu XZ (1984) Resonant Brillouin scattering in CdS. I. Experiment. Phys Rev B 29:3350

    Article  ADS  Google Scholar 

  • Yamada Y, Sakashita T, Watanabe H, Kugimiya H, Nakamura S, Taguchi T (2000) Optical properties of biexcitons in ZnS. Phys Rev B 61:8363

    Article  ADS  Google Scholar 

  • Yu PY (1979) Study of excitons and exciton-phonon interactions by resonant Raman and Brillouin spectroscopies. In: Cho K (ed) Excitons. Springer, Berlin, p 211

    Chapter  Google Scholar 

  • Yu PW, Reynolds DC, Bajaj KK, Litton CW, Klem J, Huang D, Morkoc H (1987) Observation of monolayer fluctuations in the excited states of GaAs-AlxGa1−xAs multiple-quantum-well. Solid State Commun 62:41

    Article  ADS  Google Scholar 

  • Zieliński M, Gołasa K, Molas MR, Goryca M, Kazimierczuk T, Smoleński T, Golnik A, Kossacki P, Nicolet AAL, Potemski M, Wasilewski ZR, Babiński A (2015) Excitonic complexes in natural InAs/GaAs quantum dots. Phys Rev B 91:085303

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Böer, K.W., Pohl, U.W. (2018). Excitons. In: Semiconductor Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-69150-3_14

Download citation

Publish with us

Policies and ethics