Skip to main content

Photon–Free-Electron Interaction

  • Reference work entry
  • First Online:
Semiconductor Physics
  • 7110 Accesses

Abstract

The interaction of photons with free electrons or holes in the respective bands strongly influences optical absorption and reflection in the spectral region between the absorption edge and the Reststrahlen wavelength. In a driving external field, the ensemble of free electrons (or, at higher frequency, of valence-electrons) oscillates with respect to the ion cores on the whole, leading to a plasma resonance absorption. The plasmon dispersion has two branches with frequencies depending on the carrier density. Nonresonant carrier absorption occurs away from the resonance, with a free-electron contribution predominantly from indirect transitions within the conduction band, and prevalent direct transitions for holes. The spectra and underlying dispersion relations provide valuable information about the effective masses of electrons and holes, carrier concentrations, and carrier-relaxation times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 729.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In optical spectroscopy energies are often given in units of cm−1, which are related to eV units by 10 cm−1 ≅ 1.24 meV.

  2. 2.

    This is an ac current at the frequency ω which, for higher ω (i.e., for \( \omega \ge {\tau}_{\mathrm{el}}^{-1} \)), is substantially different from the dc current, as indicated in Sect. 1.1.4. of chapter “Interaction of Light with Solids”

  3. 3.

    An elevated (above the lattice temperature) electron temperature is used here to indicate the occupancy of states higher in the conduction band by electrons.

  4. 4.

    Obtained from Eq. 35 with \( \mathbf{E}={\mathbf{E}}_0\exp \left[i\left(\mathbf{k}\;\mathbf{r}-\omega\;t\right)\right] \).

  5. 5.

    In single and multiple quantum wells ε eff is the dielectric function of the barriers. In a metal-oxide-semiconductor junction with oxide thickness d ox and perfectly screening gate, ε eff = ½(ε semiconductor + ε ox coth (q d ox)), see Chaplik 1972.

References

  • Basu PK (1997) Theory of optical processes in semiconductors. Oxford University Press, New York

    Google Scholar 

  • Cavenett BC, Pakulis EJ (1985) Optically detected cyclotron resonance in a GaAs/Ga0.67Al0.33As superlattice. Phys Rev B 32:8449

    Article  ADS  Google Scholar 

  • Chaplik AV (1972) Possible crystallization of charge carriers in low-density inversion layers. Sov Phys - JETP 35:395

    ADS  Google Scholar 

  • Das Sarma S, Quinn JJ (1982) Collective excitations in semiconductor superlattices. Phys Rev B 25:7603

    Article  ADS  Google Scholar 

  • Dixon JR (1960) Proceedings of 5th international conference physics semicond, Prague, p 366

    Google Scholar 

  • Drude P (1900) Zur Elektronentheorie der Metalle. Ann Phys (Leipzig) 1:566, and 3: 369 (On the electron theory of metals, in German)

    Article  ADS  MATH  Google Scholar 

  • Egerton RF (2009) Electron energy-loss spectroscopy in the TEM. Rep Prog Phys 72:016502

    Article  ADS  Google Scholar 

  • Fan HY (1967) Effects of free carriers on the optical properties. In: Willardson RK, Beer AC (eds) Semiconductors and semimetals, vol 3. Academic Press, New York, p 405

    Google Scholar 

  • Fasol G, Mestres N, Hughes HP, Fischer A, Ploog K (1986) Raman scattering by coupled-layer plasmons and in-plane two-dimensional single-particle excitations in multi-quantum-well structures. Phys Rev Lett 56:2517

    Article  ADS  Google Scholar 

  • Giuliani GF, Quinn JJ (1983) Charge-density excitations at the surface of a semiconductor superlattice: a new type of surface polariton. Phys Rev Lett 51:919

    Article  ADS  Google Scholar 

  • Grimes CC, Adams G (1976) Observation of two-dimensional plasmons and electron-ripplon scattering in a sheet of electrons on liquid helium. Phys Rev Lett 36:145

    Article  ADS  Google Scholar 

  • Harper PG, Hodby JW, Stradling RA (1973) Electrons and optic phonons in solids-the effects of longitudinal optical lattice vibrations on the electronic excitations of solids. Rep Prog Phys 36:1

    Article  ADS  Google Scholar 

  • Huberman M, Overhauser AW (1982) Open-orbit magnetoresistance spectra of potassium. Phys Rev B 25:2211

    Article  ADS  Google Scholar 

  • Jain JK, Allen PB (1985) Plasmons in layered films. Phys Rev Lett 54:1985

    Google Scholar 

  • Kaiser W, Collins RJ, Fan HY (1953) Infrared absorption in p-type germanium. Phys Rev 91:1380

    Article  ADS  Google Scholar 

  • Kim OK, Bonner WA (1983) Infrared reflectance and absorption of n-type InP. J Electron Mater 12:827

    Article  ADS  Google Scholar 

  • Kong X, Albert S, Bengoechea-Encabo A, Sanchez-Garcia MA, Calleja E, Trampert A (2012) Plasmon excitation in electron energy-loss spectroscopy for determination of indium concentration in (In, Ga)N/GaN nanowires. Nanotechnology 23:48

    Article  Google Scholar 

  • Lax B (1963) Proceedings of international school physics “Enrico Fermi”, Course XXII (Smith RA ed), p 240. Academic Press, New York

    Google Scholar 

  • Maan JC (1993) Intra- and interband magneto-optical properties of bulk semiconductors and heterostructures. In: Martinez G (ed) Optical properties of semiconductors. Springer Netherlands, Dordrecht

    Google Scholar 

  • Madelung O (1978) Introduction to solid state theory. Springer, Berlin/New York

    Book  Google Scholar 

  • Mooradian A, McWhorter AL (1967) Polarization and intensity of Raman scattering from plasmons and phonons in gallium arsenide. Phys Rev Lett 19:849

    Article  ADS  Google Scholar 

  • Mooradian A, Wright GB (1966) Observation of the interaction of plasmons with longitudinal optical phonons in GaAs. Phys Rev Lett 16:999

    Article  ADS  Google Scholar 

  • Oleg D, Pinczuk A, Gossard AC, Wiegmann W (1982) Plasma dispersion in a layered electron gas: a determination in GaAs-(AlGa)As heterostructures. Phys Rev B 25:7867

    Article  ADS  Google Scholar 

  • Overhauser AW (1978) Charge-density waves and isotropic metals. Adv Phys 27:343

    Article  ADS  Google Scholar 

  • Palik ED, Furdyna JK (1970) Infrared and microwave magnetoplasma effects in semiconductors. Rep Prog Phys 33:1193

    Article  ADS  Google Scholar 

  • Palik ED, Holm RT (1979) Optical characterization of semiconductors. In: Zemel JN (ed) Nondestructive evaluation of semiconductor materials and devices. Plenum Press, New York, pp 315–345

    Chapter  Google Scholar 

  • Palik ED, Wright GB (1967) Free-carrier magnetooptical effects. In: Willardson RK, Beer AC (eds) Semiconductors and semimetals, vol 3. Academic Press, New York, p 421

    Google Scholar 

  • Palik ED, Teitler S, Henvis BW, Wallis RF (1962) Magneto-optical studies of semiconductors using polarized radiation. In: Stickland AC (ed) Proceedings of 6th international conference physics semicond, Exeter, pp 288–294

    Google Scholar 

  • Patel CKN, Slusher RE (1968) Raman scattering by polaritons in presence of electron plasma in GaAs. Phys Rev Lett 22:282

    Article  ADS  Google Scholar 

  • Pidgeon CR (1962) PhD thesis, University Reading

    Google Scholar 

  • Pinczuk A, Lamont MG, Gossard AC (1986) Discrete plasmons in finite semiconductors multilayers. Phys Rev Lett 56:2092

    Article  ADS  Google Scholar 

  • Pines D (1999) Elementary excitations in solids. Perseus Books, Reading

    MATH  Google Scholar 

  • Platzman PM, Wolff PA (1973) Waves and interactions in solid state plasmas. In: Ehrenreich H, Seitz F, Turnbull D (eds). Solid state physics, vol Supplement 13, Academic Press, New York

    Google Scholar 

  • Poole CP Jr (1998) The physics handbook. Wiley, New York

    MATH  Google Scholar 

  • Roth LM (1982) Dnamics of electrons in electric and magnetic fields. In: Moss TS, Paul W (eds) Handbook of semiconductors, vol 1. North Holland Publishing, Amsterdam

    Google Scholar 

  • Sakurai JJ, Napolitano J (2011) Modern quantum mechanics, 2nd edn. Addison-Wesley, Boston

    MATH  Google Scholar 

  • Seeger K (1973) Semiconductor physics. Springer, New York

    Book  MATH  Google Scholar 

  • Seeger K (2004) Semiconductor physics, 9th edn. Springer, New York

    Book  MATH  Google Scholar 

  • Stern F (1967) Polarizability of a two-dimensional electron gas. Phys Rev Lett 18:546

    Article  ADS  Google Scholar 

  • Sugano S, Kojima N (eds) (2000) Magneto-optics. Springer, Berlin

    Google Scholar 

  • Tiginyanu IM, Irmer G, Monecke J, Vogt A, Hartnagel HL (1997) Porosity-induced modification of the phonon spectrum of n-GaAs. Semicond Sci Technol 12:491

    Article  ADS  Google Scholar 

  • Wilson JA, DiSalvo FJ, Mahajan S (1975) Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv Phys 24:17

    Google Scholar 

  • Wolfe R (1954) On the theory of optical absorption in metals and semiconductors. Proc Phys Soc London Sect A 67:74

    Article  ADS  MATH  Google Scholar 

  • Wright GB, Lax B (1961) Magnetoreflection experiments in intermetallics. J Appl Phys 32:2113

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Böer, K.W., Pohl, U.W. (2018). Photon–Free-Electron Interaction. In: Semiconductor Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-69150-3_12

Download citation

Publish with us

Policies and ethics