Skip to main content

Processing and Characterization of Bio-composites

  • Reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

Plastic waste and ecological imbalance present a challenge in front of engineers to replace the existing synthetic materials by sustainable bio-degradable materials. Offsetting the use of synthetic fibers and resin, bio-degradable fiber and resin are being widely accepted for the processing of bio-composites. These composites have potential application in various industrial and commercial areas. This chapter covers the detailed study about the processing and characterization of bio-composites. Primary processing techniques of bio-composites such as hand layup, compression molding, injection molding, etc., have been covered in this chapter. Detailed discussions on mechanical characterization and thermal characterization of the fabricated bio-composites have been included in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos Part B 44:120–127

    Article  Google Scholar 

  2. Dicker MPM, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2013) Green composites: a review of material attributes and complementary applications. Compos Part A. https://doi.org/10.1016/j.compositesa.2013.10.014

    Article  Google Scholar 

  3. Awal A, Rana M, Sain M (2014) Thermorheological and mechanical properties of cellulose reinforced PLA bio-composites. Mech Mater. https://doi.org/10.1016/j.mechmat.2014.09.009

    Article  Google Scholar 

  4. Porras A, Maranon A, Ashcroft IA (2016) Thermo-mechanical characterization of Manicaria Saccifera natural fabric reinforced poly-lactic acid composite lamina. Compos Part A 81:105–110

    Article  Google Scholar 

  5. Boumhaout M, Boukhattem L, Hamdi H, Benhamou B, Nouh FA (2017) Thermomechanical characterization of a bio-composite building material: mortar reinforced with date palm fibers mesh. Constr Build Mater 135:241–250

    Article  Google Scholar 

  6. Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J (2017) Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm Starch/Agar hybrid composites. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2017.01.079

    Article  Google Scholar 

  7. Oliver-Ortega H, Granda LA, Espinach FX, Mendez JA, Julian F, Mutje P (2016) Tensile properties and micromechanical analysis of stone groundwood from softwood reinforced bio-based polyamide11 composites. Compos Sci Technol 132:123–130

    Article  Google Scholar 

  8. Shibata S, Cao Y, Fukumoto I (2008) Flexural modulus of the unidirectional and random composites made from biodegradable resin and bamboo and kenaf fibres. Compos Part A 39:640–646

    Article  Google Scholar 

  9. Arao Y, Fujiura T, Itani S, Tanaka T (2015) Strength improvement in injection-molded jute-fiber-reinforced polylactide green-composites. Compos Part B 68:200–206

    Article  Google Scholar 

  10. Wu C (2015) Renewable resource-based green composites of surface-treated spent coffee grounds and polylactide: characterisation and biodegradability. Polym Degrad Stab 121:51–59

    Article  Google Scholar 

  11. Jayaramudu J, Reddy GSM, Varaprasad K, Sadiku ER, Ray SS, Rajulu AV (2013) Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites. Carbohydr Polym 93:622–627

    Article  Google Scholar 

  12. Khan YH, Islam A, Sarwar A, Gull N, Khan SM, Munawar MA, Zia S, Sabir A, Shafiq M, Jamil T (2016) Novel green nano composites films fabricated by indigenously synthesized graphene oxide and chitosan. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2016.03.031

    Article  Google Scholar 

  13. Kafi AA, Magniez K, Fox BL (2011) Effect of manufacturing process on the flexural, fracture toughness, and thermo-mechanical properties of bio-composites. Compos Part A 42:993–999

    Article  Google Scholar 

  14. Idicula M, Sreekumar PA, Joseph K, Thomas S (2009) Natural fiber hybrid composites – a comparison between compression molding and resin transfer molding. Polym Compos. https://doi.org/10.1002/pc.20706

    Article  Google Scholar 

  15. Sreekumar PA, Joseph K, Unnikrishnan G, Thomas S (2007) A comparative study on mechanical properties of sisal-leaf fibre-reinforced polyester composites prepared by resin transfer and compression moulding techniques. Compos Sci Technol 67:453–461

    Article  Google Scholar 

  16. Bakare FO, Ramamoorthy SK, Akesson D, Skrifvars M Thermomechanical properties of bio-based composites made from a lactic acid thermoset resin and flax/basalt fibre reinforcements. Compos Part A. https://doi.org/10.1016/j.compositesa.2015.09.002

    Article  Google Scholar 

  17. Kim K-W, Lee B-H, Kim H-J, Sriroth K, Dorgan JR (2012) Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. J Therm Anal Calorim 108:1131–1139

    Article  Google Scholar 

  18. Sahoo S, Misra M, Mohanty AK (2011) Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process. Compos Part A 42:1710–1718

    Article  Google Scholar 

  19. Mohanty AK, Tummala P, Liu W, Misra M, Mulukutla PV, Drzal LT (2005) Injection molded biocomposites from soy protein based bioplastic and short industrial hemp fiber. J Polym Environ 13:279–285

    Article  Google Scholar 

  20. Liu W, Drzal LT, Mohanty AK, Misra M (2007) Influence of processing methods and fiber length on physicalproperties of kenaf fiber reinforced soy based biocomposites. Compos Part B 38:352–359

    Article  Google Scholar 

  21. Feldmann M, Bledzki AK (2014) Bio-based polyamides reinforced with cellulosic fibres – processing and properties. Compos Sci Technol 100:113–120

    Article  Google Scholar 

  22. Memon A, Nakai A (2013) Mechanical properties of jute spun yarn/PLA tubular braided composite by pultrusion molding. Energy Procedia 34:818–829

    Article  Google Scholar 

  23. Misri S, Sapuan SM, Leman Z, Ishak MR (2014) Torsional behaviour of filament wound kenaf yarn fibre reinforced unsaturated polyester composite hollow shafts. Mater Des. https://doi.org/10.1016/j.matdes.2014.09.073

    Article  Google Scholar 

  24. Sevkat E, Tumer H (2013) Residual torsional properties of composite shafts subjected to impact loadings. Mater Des 51:956–967

    Article  Google Scholar 

  25. Cuinat-Guerraz N, Dumont M-J, Hubert P (2016) Environmental resistance of flax/biobased epoxy and flax/polyurethane composites manufactured by resin transfer moulding. Compos Part A. https://doi.org/10.1016/j.compositesa.2016.05.018

    Article  Google Scholar 

  26. Dweib MA, Hu B, Shenton HW, Wool RP (2006) Bio-based composite roof structure: Manufacturing and processing issues. Compos Struct 74:379–388

    Article  Google Scholar 

  27. Boey FYC, Lye SW (1992) Void reduction in autoclave processing of thermoset composites Part 1: high pressure effects on void reduction. Composites 23:261–265

    Article  Google Scholar 

  28. Essabir H, Bensalah MO, Rodrigue D, Bouhfid R, Qaiss A (2016) Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: Fibers and shell particles. Mech Mater 93:134–144

    Article  Google Scholar 

  29. Song KH, Kim IS (2013) Effects of plasticizer on the mechanical properties of kenaf/starch bio-composites. Fibers Polym 14:2135–2140

    Article  Google Scholar 

  30. Shah DU, Porter D, Vollrath F (2014) Can silk become an effective reinforcing fibre? A property comparison with flax and glass reinforced composites. Compos Sci Technol 101:173–183

    Article  Google Scholar 

  31. Chaudhary V, Bajpai PK, Maheshwari S (2017) Studies on mechanical and morphological characterization of developed jute/hemp/flax reinforced hybrid composites for structural applications. J Nat Fibers. https://doi.org/10.1080/15440478.2017.1320260

    Article  Google Scholar 

  32. Maiti M, Kaith BS, Jindal R, Jana AK (2010) Synthesis and characterization of corn starch based green composites reinforced with Saccharum spontaneum L graft copolymers prepared under micro-wave and their effect on thermal, physio-chemical and mechanical properties. Polym Degrad Stab 95:1694–1703

    Article  Google Scholar 

  33. Baghaei B, Skrifvars M (2016) Characterisation of polylactic acid biocomposites made from prepregs composed of woven polylactic acid/hemp–Lyocell hybrid yarn fabrics. Compos Part A 81:139–144

    Article  Google Scholar 

  34. Bajpai PK, Singh I, Madaan J (2012) Comparative studies of mechanical and morphological properties of polylactic acid and polypropylene based natural fiber composites. J Reinf Plast Compos 31:1712–1724

    Article  Google Scholar 

  35. Rout J, Misra M, Tripathy SS, Nayak SK, Mohanty AK (2001) The influence of fibre treatment on the performance of coir-polyester composites. Compos Sci Technol 61:1303–1310

    Article  Google Scholar 

  36. Haque MM, Hasan M, Islam MS, Ali ME (2009) Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresour Technol 100:4903–4906

    Article  Google Scholar 

  37. Chen S, Cheng L, Huang H, Zou F, Zhao H-P (2017) Fabrication and properties of poly(butylene succinate) biocomposites reinforced by waste silkworm silk fabric. Compos Part A. https://doi.org/10.1016/j.compositesa.2017.01.004

    Article  Google Scholar 

  38. Asaithambi B, Ganesan G, Kumar SA (2014) Bio-composites: development and mechanical characterization of banana/sisal fibre reinforced poly lactic acid (PLA) hybrid composites. Fibers Polym 15:847–854

    Article  Google Scholar 

  39. Esmaeili N, Bakare FO, Skrifvars M, Afshar SJ, Kesson DA (2014) Mechanical properties for bio-based thermoset composites made from lactic acid, glycerol and viscose fibers. Cellulose. https://doi.org/10.1007/s10570-014-0500-3

    Article  Google Scholar 

  40. Fombuena V, Bernardi L, Fenollar O, Boronat T, Balart R (2014) Characterization of green composites from biobased epoxy matrices and bio-fillers derived from seashell wastes. Mater Des 57:168–174

    Article  Google Scholar 

  41. Durante M, Langella A, Formisano A, Boccarusso L, Carrino L (2016) Dynamic-mechanical behaviour of bio-composites. Procedia Eng 167:231–236

    Article  Google Scholar 

  42. García-García D, Carbonell A, Samper MD, García-Sanoguera D, Balart R (2015) Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Compos Part B. https://doi.org/10.1016/j.compositesb.2015.03.080

    Article  Google Scholar 

  43. Graupner N, Herrmann AS, Mussig J (2009) Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Compos Part A 40:810–821

    Article  Google Scholar 

  44. Bax B, Mussig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2008.01.004

    Article  Google Scholar 

  45. Badawy AAM (2012) Impact behavior of glass fibers reinforced composite laminates at different temperatures. Ain Shams Eng J 3:105–111

    Article  Google Scholar 

  46. Thirmizir MZA, Ishak ZAM, Taib RM, Rahim S, Jani SM (2011) Kenaf-bast-fiber-filled biodegradable poly(butylenesuccinate) composites: effects of fiber loading, fiber length, and maleated poly(butylene succinate) on the flexural and impact properties. J Appl Polym Sci 122:3055–3063

    Article  Google Scholar 

  47. Głowińska E, Datta J, Parcheta P (2017) Effect of sisal fiber filler on thermal properties of bio-based polyurethane composites. J Therm Anal Calorim. https://doi.org/10.1007/s10973-017-6293-5

    Article  Google Scholar 

  48. Srinivasa CV, Bharath KN (2011) Impact and hardness properties of areca fiber-epoxy reinforced composites. J Mater Environ Sci 2:351–356

    Google Scholar 

  49. Avinash S, Hanumantharaju HG, Vignesh M, Akash S (2014) Investigation of mechanical properties on vinylester based bio-composite with gelatin as randomly distributed filler material. Int J Res Eng Technol 3:252–258

    Google Scholar 

  50. Guleria A, Singha AS, Rana RK (2017) Preparation of starch based biocomposites reinforced with mercerized lignocellulosic fibers – evaluation of their thermal, morphological, mechanical and biodegradable properties. Int J Polym Anal Charact. https://doi.org/10.1080/1023666X.2017.1345558

    Article  Google Scholar 

  51. Julkapli NM, Akil HM (2010) Thermal properties of kenaf-filled chitosan biocomposites. Polym-Plast Technol Eng 49:147–153

    Article  Google Scholar 

  52. Revati R, Majid MSA, Ridzuana MJM, Normahira M, Nasir NFM, Rahman YMN, Gibson AG (2017) Mechanical, thermal and morphological characterisation of 3D porous Pennisetum purpureum/PLA biocomposites scaffold. Mater Sci Eng C 75:752–759

    Article  Google Scholar 

  53. Dayo AQ, Gao B-c, Wang J, W-b L, Derradji M, Shah AH, Babar AA (2017) Natural hemp fiber reinforced polybenzoxazine composites: curing behavior, mechanical and thermal properties. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2017.03.024

    Article  Google Scholar 

  54. Berthet M-A, Mayer-Laigle C, Rouau X, Gontard N, Angellier-Coussy H (2017) Sorting natural fibres: a way to better understand the role of fibre size polydispersity on the mechanical properties of biocomposites. Compos Part A. https://doi.org/10.1016/j.compositesa.2017.01.011

    Article  Google Scholar 

  55. Poddar P, Islam MS, Sultana S, Nur HP, Chowdhury AMS (2016) Mechanical and thermal properties of short arecanut leaf sheath fiber reinforced polypropyline composites: TGA, DSC and SEM analysis. J Mater Sci Eng. https://doi.org/10.4172/2169-0022.1000270

  56. Saba N, Jawaid M, Alothman OY, Paridah MT (2016) A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 106:149–159

    Article  Google Scholar 

  57. Reddy MI, Reddy VS (2014) Dynamic mechanical analysis of hemp fiber reinforced polymer matrix composites. Int J Eng Res Technol 3:410–415

    Article  Google Scholar 

  58. Doan T-T-L, Brodowsky H, Mader E (2007) Jute fibre/polypropylene composites II. Thermal, hydrothermal and dynamic mechanical behaviour. Compos Sci Technol 67:2707–2714

    Article  Google Scholar 

  59. Muthuraj R, Misra M, Defersha F, Mohanty AK (2015) Influence of processing parameters on the impact strength of biocomposites: a statistical approach. Compos Part A. https://doi.org/10.1016/j.compositesa.2015.09.003

    Article  Google Scholar 

  60. Rahman MM, Khan MA (2007) Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers’ physico-mechanical properties. Compos Sci Technol 67:2369–2376

    Article  Google Scholar 

  61. Kaushik VK, Kumar A, Kalia S (2012) Effect of mercerization and benzoyl peroxide treatment on morphology, thermal stability and crystallinity of sisal fibers. Int J Text Sci 1:101–105

    Article  Google Scholar 

  62. Martins IMG, Magina SP, Oliveira L, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2009) New biocomposites based on thermoplastic starch and bacterial cellulose. Compos Sci Technol 69:2163–2168

    Article  Google Scholar 

  63. Lomelí-Ramíreza MG, Kesturb SG, Manríquez-Gonzálezc R, Iwakiria S, Bolzon de Muniza G, Flores-Sahagund TS (2014) Bio-composites of cassava starch-green coconut fiber: part II – structure and properties. Carbohydr Polym 102:576–583

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Chaudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bajpai, P.K., Ahmad, F., Chaudhary, V. (2019). Processing and Characterization of Bio-composites. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_98

Download citation

Publish with us

Policies and ethics