Applications of Nanoparticles in the Treatment of Wastewater

  • Iffat Zareen Ahmad
  • Asad Ahmad
  • Heena Tabassum
  • Mohammed KuddusEmail author
Reference work entry


Contamination of drinking water is a major global problem as it causes irreversible damage to soil, plants, humans, and animals and spreads numerous epidemics and chronic diseases. Wastewater contains high concentration of metals, herbicides, pesticides, and toxic industrial effluents that can disrupt various biochemical processes in the animals and human beings and lead to alteration of enzyme activities/pathways which could cause various diseases and even genetic disorders. The worldwide population growth and climate change have posed serious threats to the availability of clean drinking water, and there is an urgent need for novel and innovative water treatment technologies to ensure continuous supply of pure drinking water. Moreover, the harmful effects and limitations of chemical-based water treatment processes are well known. A recent trend in nanotechnology shows the applications of nano-based materials, such as nano-adsorbents, nano-metals, nano-membranes, and photocatalysts, in various processes. Keeping all these factors in mind, the present chapter is aimed to summarize the use of nanoparticles in the remediation and treatment of wastewater. This chapter also deals with potential future applications of nanoparticle-based treatment methods and its comparison with conventional processes along with commercialization of products.


Wastewater treatment Pollutants Heavy metals Bioremediation Nanoparticles Nanosorbents Nano-membranes Photocatalysts 

List of Abbreviations


3D excitation-emission matrix fluorescence spectroscopy


Adenylate kinase


Atomic force microscopy




Chemical oxygen demand


Dynamic light scattering


Energy-dispersive X-ray spectroscopy


Extracellular polymeric substance


Fourier-transform infrared spectroscopy


High-gradient magnetic separation




Inductively coupled plasma mass spectrometry


Lipid peroxidation


Loosely bound EPS


Magnetic nanoparticles


Minimum bactericidal concentration


Minimum inhibitory concentration


Nanocrystalline titanium dioxide


Nitrate reductase


Nitrite reductase


No observed effect concentration


Nano-zerovalent iron


Olive mill wastewater


Organization for Economic Cooperation and Development




Polycyclic aromatic hydrocarbons


Polyphosphate kinase




Reduced glutathione


Scanning electron microscope


Super paramagnetic iron oxide nanoparticles




Total suspended solids


Transmission electron microscopy






Upflow anaerobic sludge blanket


Waste silicon sludge


World Health Organization


X-ray absorption spectroscopy


X-ray diffraction


X-ray photoelectron spectroscopy


  1. 1.
    World Health Organization (2008) Guidelines for drinking water quality, 3rd edn. Geneva. Retrieved from fulltext.pdf
  2. 2.
    Brezonik PL, Arnold WA (2012) Water chemistry: fifty years of change and progress. Environ Sci Technol 46:5650–5657CrossRefGoogle Scholar
  3. 3.
    Chen S, Zou Y, Yan Z, Shen W, Shi S, Zhang X, Wang H (2009) Carboxymethylated bacterial cellulose for copper and lead ion removal. J Hazard Mater 161:1355–1359CrossRefGoogle Scholar
  4. 4.
    Chen Y, Pan B, Li H, Zhang W, Lv L, Wu J (2010) Selective removal of Cu(II) ions by using cation-exchange resin-supported polyethyleneimine (PEI) nanoclusters. Environ Sci Technol 44:3508–3513CrossRefGoogle Scholar
  5. 5.
    Ivanov V, Tay JH, Tay STL, Jiang HL (2004) Removal of micro-particles by microbial granules used for aerobic wastewater treatment. Water Sci Technol 50:147–154CrossRefGoogle Scholar
  6. 6.
    Pokhrel D, Viraraghavan T (2008) Arsenic removal from an aqueous solution by modified A. niger biomass: batch kinetic and isotherm studies. J Hazard Mater 150:818–825CrossRefGoogle Scholar
  7. 7.
    Vaclavikova M, Gallios GP, Hredzak S, Jakabsky S (2008) Removal of arsenic from water streams: an overview of available techniques. Clean Technol Envir 10:89–95CrossRefGoogle Scholar
  8. 8.
    Schulte J, Dutta J (2005) Nanotechnology in environmental protection and pollution. Sci Technol Adv Mater 6:219–220CrossRefGoogle Scholar
  9. 9.
    Auffan M, Shipley HJ, Yean S, Kan AT, Tomson M, Rose J, Bottero JY (2007) Nanomaterials as adsobents. In: Wiesner MR, Bottero JY (eds) Environmental nanotechnology: applications and impacts of nanomaterials. McGraw-Hill, New York, pp 371–392Google Scholar
  10. 10.
    Carlos L, Einschlag FSG, González MC, Mártire DO (2013) Applications of magnetite nanoparticles for heavy metal removal from wastewater. In: Einschlag FSG, Carlos L (eds) Wastewater - treatment technologies and recent analytical developments. InTech Publisher, Rijeka, Croatia, pp 63–77Google Scholar
  11. 11.
    Laurent S, Forge D, Port M, Roch A, Robic C, Vander EL, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev 108:2064–2110CrossRefGoogle Scholar
  12. 12.
    Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235CrossRefGoogle Scholar
  13. 13.
    Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents – a critical review. J Hazard Mater 142:1–53CrossRefGoogle Scholar
  14. 14.
    Deliyanni EA, Peleka EN, Gallios GP, Matis KA (2010) A critical review of the separation of arsenic oxyanions from dilute aqueous solution (the contribution of LGICT). Int J Environ Pollut 8:286–304Google Scholar
  15. 15.
    Mayo JT, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin VL (2007) The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater 8:71–75CrossRefGoogle Scholar
  16. 16.
    Bedi PS, Kaur A (2015) An overview on uses of zinc oxide nanoparticles. WJPPS 4:1177–1196Google Scholar
  17. 17.
    Pandipriya J, Praveena E, Kuriakose RM, Suganiya MJA, Therese M, Nandhitha NM (2104) An insight into the selection of nanoparticle for removing contaminants in wastewater. Int J Eng Res Appl 4:203–208Google Scholar
  18. 18.
    Sushma D, Richa S (2015) Use of nanoparticles in water treatment: a review. Int Res J Environ Sci 4:103–106Google Scholar
  19. 19.
    Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946CrossRefGoogle Scholar
  20. 20.
    Chalew TEA, Ajmani GS, Huang H, Schwab KJ (2013) Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121:1161–1166CrossRefGoogle Scholar
  21. 21.
    Shirazi MRA, Shariati F, Keshavarz AK, Ramezanpour Z (2015) Toxic effect of aluminum oxide nanoparticles on green micro-algae Dunaliella salina. Int J Environ Res 9:585–594Google Scholar
  22. 22.
    Tanada S, Kabayama M, Kawasaki N, Sakiyama T, Nakamura T, Araki M, Tamura T (2003) Removal of phosphate by aluminum oxide hydroxide. J Colloid Interface Sci 257:135–140CrossRefGoogle Scholar
  23. 23.
    Kamika I, Tekere M (2017) Impacts of cerium oxide nanoparticles on bacterial community in activated sludge. AMB Express 7:1–11CrossRefGoogle Scholar
  24. 24.
    Dong Y, He K, Yin L, Zhang A (2007) A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties. Nanotechnology 18:1–6Google Scholar
  25. 25.
    Chang W, Shena Y, Xiea A, Tong W (2009) Preparation of Al2O3 supported nanoCu2O catalysts for the oxidative treatment of industrial wastewater. Russ J Phys Chem A 83:2308–2312CrossRefGoogle Scholar
  26. 26.
    Luo J, Steier L, Son MK, Schreier M, Mayer MT, Grätzel M (2016) Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett 16:1848–1857CrossRefGoogle Scholar
  27. 27.
    Mao P, Qi L, Liu X, Liu Y, Jiao Y, Chen S, Yang Y (2017) Synthesis of Cu/Cu2O hydrides for enhanced removal of iodide from water. J Hazard Mater 328:21–28CrossRefGoogle Scholar
  28. 28.
    McDonald KJ, Reddy KJ, Singh N, Singh RP, Mukherjee S (2015) Removal of arsenic from groundwater in West Bengal, India using CuO nanoparticle adsorbent. Environ Earth Sci 73:3593–3601CrossRefGoogle Scholar
  29. 29.
    Miao L, Wang C, Hou J, Wang P, Ao Y, Li Y, Yao Y, Lv B, Yang Y, You G, Xu Y, Gu Q (2017) Response of wastewater biofilm to CuO nanoparticle exposure in terms of extracellular polymeric substances and microbial community structure. Sci Total Environ 579:588–597CrossRefGoogle Scholar
  30. 30.
    Sukuda T, Tsunoyama H, Sakurai H (2011) Aerobic oxidations catalysed by colloidal nanogold. Chem Asian J 6:736–748CrossRefGoogle Scholar
  31. 31.
    Herves P, Perez-Lorenzo M, Liz-Marzan LM, Dzubiella J, Lu Y, Ballauff M (2012) Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem Soc Rev 41:5577–5587CrossRefGoogle Scholar
  32. 32.
    Environmental Protection Agency (2008) National primary drinking water regulations and contaminant candidate list. USEPA. Retrieved from
  33. 33.
    Wong MS, Alvarez PJJ, Fang YL, Akcin N, Nutt MO, Miller JT, Heck KN (2009) Cleaner water using bimetallic nanoparticle catalysts. J Chem Technol Biotechnol 84:158–166CrossRefGoogle Scholar
  34. 34.
    Nutt MO, Hughes JB, Wong MS (2005) Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. Environ Sci Technol 39:1346–1353CrossRefGoogle Scholar
  35. 35.
    Nutt MO, Heck KN, Alvarez P, Wong MS (2006) Improved Pd-on-Au bi metallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination. Appl Catal B Environ 69:115–125CrossRefGoogle Scholar
  36. 36.
    Fang Y-L, Heck KN, Alvarez PJJ, Wong MS (2011) Kinetics analysis of palladium/gold nanoparticles as colloidal hydrodechlorination catalysts. ACS Catal 1:128–138CrossRefGoogle Scholar
  37. 37.
    Wu Y, Li Z, Chen J, Yu C, Huang X, Zhao C, Duan L, Yang Y, Lu W (2015) Graphene nanosheets decorated with tunable magnetic nanoparticles and their efficiency of wastewater treatment. Mater Res Bull 68:234–239CrossRefGoogle Scholar
  38. 38.
    Tabassum A, Sunita D, Raj MS (2014) Antibacterial effect of magnesium oxide nanoparticle on water contaminated with E.coli. Res Rev J Microbiol Biotechnol 3:10–13Google Scholar
  39. 39.
    Srivastavaa V, Sharmab YC, Sillanpaa M (2015) Green synthesis of magnesium oxide nanoflower and its application for the removal of divalent metallic species from synthetic wastewater. Ceram Int 41:6702–6709CrossRefGoogle Scholar
  40. 40.
    Kovenklioglu S, Cao Z, Shah D, Farrauto RJ, Balko EN (1992) Direct catalytic hydride chlorination of toxic organics in wastewater. AICHE J 38:1003–1012CrossRefGoogle Scholar
  41. 41.
    Lowry GV, Reinhard M (2000) Pd-catalyzed TCE dechlorination in groundwater: solute effects, biological control, and oxidative catalyst regeneration. Environ Sci Technol 34:3217–3223CrossRefGoogle Scholar
  42. 42.
    Parekh A (2013) Use of magnetic nanoparticles for wastewater treatment. Massachusetts Institute of Technology, Cambridge, USA.Google Scholar
  43. 43.
    Asrarian R, Jadidian R, Parham H, Haghtalab S (2014) Removal of Aluminum from water and wastewater using magnetic iron oxide nanoparticles. Adv Mater Res 829:752–756CrossRefGoogle Scholar
  44. 44.
    Xu Y, Li C, Zhu X, Huang WE, Zhang D (2014) Application of magnetic nanoparticles in drinking water purification. Environ Eng Manag J 13:2023–2029CrossRefGoogle Scholar
  45. 45.
    Peng Q, Liu Y, Zeng G, Xu W, Yang C, Zhang J (2010) Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae, on the surface of chitosan coated magnetic nanoparticles from aqueous solution. J Hazard Mater 177:676–682CrossRefGoogle Scholar
  46. 46.
    Aftabtalab A, Sadabadi H, Chakra CHS, Rao KV, Shaker S, Mahofa EP (2014) Magnetite nanoparticles (Fe3O4) synthesis for removal of Chromium (VI) from wastewater. IJSER 5:1419–1423Google Scholar
  47. 47.
    Butt RS, Nazir R, Khan MN, Hamid A, Deeba F (2014) Treatment of electroplating industry wastewater using iron nanoparticle doped spent tea waste charcoal. JBES 5:7–17Google Scholar
  48. 48.
    Shen YF, Tang J, Nie ZH, Wang YD, Ren Y, Zuo L (2009) Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep Purif Technol 68:312–319CrossRefGoogle Scholar
  49. 49.
    Gill SK, Singh G, Khatri M (2017) Synthesis and characterization of super paramagnetic iron oxide nanoparticles for water purification applications. IJETSR 4:355–359Google Scholar
  50. 50.
    Ehrampoush MH, Miria M, Salmani MH, Mahvi AH (2015) Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. J Environ Health Sci Eng 13:1–7CrossRefGoogle Scholar
  51. 51.
    Ding H, Li J, Gao Y, Zhao D, Shi D, Mao G, Liu S, Tan X (2015) Preparation of silica nanoparticles from waste silicon sludge. Powder Technol 284:231–236CrossRefGoogle Scholar
  52. 52.
    Iqbal M, Purkait TK, Goss GG, Bolton JR, El-Din MG, Veinot JGC (2016) Application of engineered Si nanoparticles in light-induced advanced oxidation remediation of a water-borne model contaminant. ACS Nano 10:5405–5412CrossRefGoogle Scholar
  53. 53.
    Jabna KK, Meera V (2017) Nanosilver as antimicrobial agent in treatment of water/wastewater. IJIRSE 3:399–406Google Scholar
  54. 54.
    Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45:1992–1998CrossRefGoogle Scholar
  55. 55.
    Zhang H (2013) Application of silver nanoparticles in drinking water purification. University of Rhode Island, Kingston, USA, pp 1–200Google Scholar
  56. 56.
    Mondal K, Sharma A (2014) Photocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials – a mini-review. In: Mishra A, Bellare JR (eds) Nanoscience & technology for mankind. The National Academy of Sciences, Allahabad, India, pp 36–72Google Scholar
  57. 57.
    Shahmoradi B, Ibrahim IA, Sakamoto N, Ananda S, Somashekar R, Row TNG, Byrappa K (2010) Photocatalytic treatment of municipal wastewater using modified neodymium doped TiO2 hybrid nanoparticles. J Environ Sci Health A 45:1248–1255CrossRefGoogle Scholar
  58. 58.
    Sthathatos E, Tsiourvas D, Lianos P (1999) Titanium dioxide films made from reverse micelles and their use for the photocatalytic degradation of adsorbed dyes. Colloids Surf A Physicochem Eng Asp 149:49–56CrossRefGoogle Scholar
  59. 59.
    Zhang K, Kemp KC, Chandra V (2012) Homogenous anchoring of TiO2 nanoparticles on graphene sheets for wastewater treatment. Mater Lett 81:127–130CrossRefGoogle Scholar
  60. 60.
    Lazar MA, Varghese S, Nair SS (2012) Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts 2:572–601CrossRefGoogle Scholar
  61. 61.
    Banerjee P, Das D, Mitra P, Sinha M, Dey S, Chakrabarti S (2014) Solar photocatalytic treatment of wastewater with zinc oxide nanoparticles and its ecotoxicological impact on Channa punctatus –a freshwater fish. J Mat Environ Sci 5:1206–1213Google Scholar
  62. 62.
    Otero-Gonzalez L, Field JA, Sierra-Alvarez R (2014) Fate and long term inhibitory impact of ZnO nanoparticles during high rate anaerobic wastewater treatment. J Environ Manag 135:110–117CrossRefGoogle Scholar
  63. 63.
    Ma R, Levard C, Judy JD, Unrine JM, Durenkamp M, Martin B, Jefferson B, Lowry GV (2014) Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environ Sci Technol 48:104–112CrossRefGoogle Scholar
  64. 64.
    Elmi F, Alinezhad H, Moulana Z, Salehian F, Tavakkoli SM, Asgharpour F, Fallah H, Elmi MM (2014) The use of antibacterial activity of ZnO nanoparticles in the treatment of municipal wastewater. Water Sci Technol 70:763–770CrossRefGoogle Scholar
  65. 65.
    Puay N-Q, Qiu G, Ting Y-P (2015) Effects of ZnO nanoparticles on biological wastewater treatment in a sequencing batch reactor. J Clean Prod 88:1–7CrossRefGoogle Scholar
  66. 66.
    Sirisha SAD, Mary A (2016) Green synthesis of nanoparticle of zinc and treatment of nanobeads for wastewater of alizarin red dye. Int J Environ Res Develop 6:11–16Google Scholar
  67. 67.
    Lamba R, Umar A, Mehta SK, Kansal SK (2015) ZnO doped SnO2 nanoparticles heterojunction photo-catalyst for environmental remediation. J Alloys Compd 653:327–333CrossRefGoogle Scholar
  68. 68.
    Su Y, Cui H, Li Q, Gao S, Shang JK (2013) Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles. Water Res 47:5018–5026CrossRefGoogle Scholar
  69. 69.
    Mahmoud ME, Abdelwahab MS, Fathallah EM (2013) Design of novel nano-sorbents based on nano-magnetic iron oxide–bound-nano-silicon oxide–immobilized-triethylenetetramine for implementation in water treatment of heavy metals. Chem Eng J 223:318–327CrossRefGoogle Scholar
  70. 70.
    Ruzmanova Y, Stoller M, Chianese A (2013) Photocatalytic treatment of olive mill wastewater by magnetic core titanium dioxide nanoparticles. Chem Eng Trans 32:2269–2274Google Scholar
  71. 71.
    Mahdavi S, Jalali M, Afkhami A (2013) Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles. Chem Eng Commun 200:448–470CrossRefGoogle Scholar
  72. 72.
    Daniel SCGK, Malathi S, Balasubramanian S, Sivakumar M, Sironmani TA (2014) Multifunctional silver, copper and zero valent iron metallic nanoparticles for wastewater treatment. In: Mishra AK (ed) Application of nanotechnology in water research. Wiley, Hoboken, pp 435–457Google Scholar
  73. 73.
    Wang T, Zhang D, Dai L, Chen Y, Dai X (2016) Effects of metal nanoparticles on methane production from waste-activated sludge and microorganism community shift in anaerobic granular sludge. Sci Rep 6:1–10CrossRefGoogle Scholar
  74. 74.
    Yang Y, Zhang C, Hu Z (2013) Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion. Environ Sci Proc Imp 15:39–48CrossRefGoogle Scholar
  75. 75.
    Dawson A, Kamat PV (2001) Semiconductor-metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/gold) nanoparticles. J Phys Chem B 105:960–966CrossRefGoogle Scholar
  76. 76.
    Subramanian V, Wolf EE, Kamat PV (2004) Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. J Am Chem Soc 126:4943–4950CrossRefGoogle Scholar
  77. 77.
    Arabatzis IM, Stergiopoulos T, Andreeva D, Kitova S, Neophytides SG, Falaras P (2003) Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. J Catal 220:127–135CrossRefGoogle Scholar
  78. 78.
    Orlov A, Jefferson D, Macleod N, Lambert R (2004) Photocatalytic properties of TiO2 modified with gold nanoparticles in the degradation of 4-chlorophenol in aqueous solution. Catal Lett 92:41–47CrossRefGoogle Scholar
  79. 79.
    Heck KN, Nutt MO, Alvarez P, Wong MS (2009) Deactivation resistance of Pd/Au nanoparticle catalysts for water-phase hydrodechlorination. J Catal 267:97–104CrossRefGoogle Scholar
  80. 80.
    Teevs L, Vorlop KD, Prube U (2011) Model study on the aqueous-phase hydrodechlorination of clopyralid on noble metal catalysts. Catal Commun 14:96–100CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Iffat Zareen Ahmad
    • 1
  • Asad Ahmad
    • 1
  • Heena Tabassum
    • 1
  • Mohammed Kuddus
    • 2
    Email author
  1. 1.Department of BioengineeringIntegral UniversityLucknowIndia
  2. 2.Department of Biochemistry, College of MedicineUniversity of HailHailSaudi Arabia

Personalised recommendations