Skip to main content

Nanocomposites for Structural and Energy Applications

  • Reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

The present chapter provides comprehensive literature survey undertaken on the use of nanocomposites for both structural and energy applications. Research in the development of polymer-based composites for structural and energy applications is gaining prominence in the present scenario due to their unique lightweight and high-strength properties. Plain polymer alone cannot provide the deserved strength required for the structural applications due to the brittle nature of the plastics. Such drawbacks of polymeric materials can be suitably addressed by reinforcing it with strength fillers at both micro- and nano-level. However, continuous effort has been made by several investigators to improve the mechanical properties of polymers by adopting several reinforcement techniques. Recently usage of nano-materials in polymer-based matrix for varied applications is gaining tremendous importance due to their unique physical and chemical properties as compared to conventional strength fillers like carbon fibers, natural fibers unlike. Carbon nanostructures, such as graphene and fullerenes, have gained prominence for energy storage, and this is mainly attributed to their large aspect ratios, specific surface areas, and electrical conductivity (as reported by Sharma and Bhatti 51:2901–2912, 2010; Boota et al. 161:A1078–A1083, 2014). This chapter highlights on the advances made in energy storage applications involving multifunctional carbon nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee B., Processing of Macroscopic Fiber Composites with Dispersion of Nanoparticles in Resin Matrix, 221st American Chemical Society Natl Mtg. Symp. On Defense Application of Nanomaterials, CA, April, 2001

    Google Scholar 

  2. Yong V, Hahn HT (2004) Processing and properties of SiC/vinyl Ester Nanocomposites. Nanotechnology 15:1338–1343

    Google Scholar 

  3. Yasmin A, Abot JL, Daniel IM (2003) Processing of clay/epoxy Nanocomposites by shear mixing. Scr Mater 49:81–86

    Google Scholar 

  4. Shah RK, Paul DR (2004) Nylon 6 Nanocomposites prepared by a melt mixing Masterbatch process. Polymer 45:2991–3000

    Google Scholar 

  5. Haggenmueller R, Du F, Fischer JE, Winey KI (2006) Interfacial in situ polymerization of single wall carbon nanotube/nylon 6, 6 nanocomposites. Polymer 47:2381–2388

    Google Scholar 

  6. Rodgers RM, Mahfuz H, Rangari VK, Chisholm N, Jeelani S (2005) Infusion of SiC nanoparticles into SC-15 epoxy: an investigation of thermal and mechanical response. Macromol Mater Eng 290:423–429

    Google Scholar 

  7. Adebhar T, Roscher C, Adam J (2001) Reinforcing nanoparticles in reactive resins. Eur Coatings J 4:144

    Google Scholar 

  8. Kinloch AJ, Lee JH, Taylor AC, Sprenger S, Eger C, Egan D (2003) Toughening structural adhesives via Nano- and Micro-phase inclusions. J Adhes 79:867–873

    Google Scholar 

  9. Zilg C, Thomman T, Finter J, Mulhaupt R (2000) The influence of silicate modification and Compatibilizers on mechanical properties and morphology of anhydride-cured epoxy Nanocomposites. Macromol Mater Eng 280:41

    Google Scholar 

  10. Guo Z, Liang X, Pereira T, Scaffaro R, Hahn HT (2007) CuO nanoparticle filled vinyl-ester resin nanocomposites: fabrication, characterization and property analysis. Compos Sci Technol 67:2036–2044

    Google Scholar 

  11. Subramaniyan AK, Sun CT (2006) Enhancing compressive strength of unidirectional polymeric composites using Nanoclay. Compos Part A 37(12):2257

    Google Scholar 

  12. Choi Y-K, Sugimoto K-I, Song S-M, Ohkoshi Y, Endo M (2005) Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon Nanofibers. Carbon 43:2199–2208

    Google Scholar 

  13. Zheng H, Ning R, Zheng Y (2005) Study of SiO2 nanoparticles on the improved performance of epoxy and fiber composites. J Reinf Plast Compos 24:223–233

    Google Scholar 

  14. Cho J, Joshi MS, Sun CT (2006) Effect of inclusion size on mechanical properties of polymeric composites with micro and Nano particles. Compos Sci Technol 66(13):1941–1952

    Google Scholar 

  15. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Google Scholar 

  16. Dresselhaus M, Dresselhaus G, Avouris P (2002) Carbon nanotubes: synthesis, structure, properties and applications. Springer, New York

    Google Scholar 

  17. Reich S, Thomsen C, Maultzsch J (2004) Carbon nanotubes: basic concepts and physical properties. Wiley-VCH, Weinheim

    Google Scholar 

  18. Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33(7):925–930

    Google Scholar 

  19. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680

    Google Scholar 

  20. Salvetat JP, Kulik AJ, Bonard JM, Forro L, Benoit W, Auppironi L (1999) Mechanical properties of carbon nanotubes. Appl Phys A Mater Sci Process 3:255–260

    Google Scholar 

  21. MF Y, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640

    Google Scholar 

  22. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56

    Google Scholar 

  23. Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6(1):96–100

    Google Scholar 

  24. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9):1624–1652

    Google Scholar 

  25. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912

    Google Scholar 

  26. Rana S, Alagirusamy R, Joshi M (2009) A review on carbon epoxy nanocomposites. J Reinf Plast Compos 28(4):461–487

    Google Scholar 

  27. Ruiz-Perez L, Ryston GJ, Fairclough JPA, Ryan AJ (2008) Toughening by nanostructure. Polymer 49:4475–4488

    Google Scholar 

  28. Qian H, Greenhalgh ES, Shaffer MSP, Bismarck A (2010) Carbon nanotube-based hierarchical composites: a review. J Mater Chem 20:4751–4762

    Google Scholar 

  29. Ozdemir NG, Zhang T, Aspin I, Scarpa F, Davinia H, Song Y (2016) Toughening of carbon fiber reinforced polymer composites with rubber nanoparticles for advanced industrial applications. Express Polym Lett 10(5):394–407

    Google Scholar 

  30. Nash NH, Young TM, McGrail PT, Stanley WF (2015) Inclusion of a thermoplastic phase to improve impact and post-impact performances of carbon fiber reinforced thermosetting composites. Mater Des 85:582–597

    Google Scholar 

  31. Kangha P, Lingaiah S, Sivakumar K (2010) Effect of Nylon-66 nano-fiber interleaving on impact damage resistance of epoxy/carbon fiber composite laminates. Compos Struct 92(6):432–1439

    Google Scholar 

  32. Chekov DI, Stepashkin AA, Maksimkin AV, Tcherdyntsev VV, Kaloshkin SD, Kuskov KV, Bugakov VI (2015) Investigation of structure, mechanical and tribological properties of short carbon fiber reinforced UHMWPE-matrix composites. Compos Part B 76:79–88

    Google Scholar 

  33. Unterweger C, Duchoslava J, Stifterb D, Fürsta C (2015) Characterization of carbon fiber surfaces and their impact on the mechanical properties of short carbon fiber reinforced polypropylene composites. Compos Sci Technol 108:41–47

    Google Scholar 

  34. Martone A, Formica C, Giordano M, Zarrelli M (2010) Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites. Compos Sci Technol 70:1154–1160

    Google Scholar 

  35. Liu L, Zheng Z, Chenyi G, Wang X (2010) The poly (urethane-ionic liquid)/multi-walled carbon nanotubes composites. Compos Sci Technol 70:1697–1703

    Google Scholar 

  36. Ashrafi B, Guan J, Mercalli V, Zhang Y, Chun L, Simard PHB, Kingston CT, Bourne O, Johnston A (2011) Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes. Compos Sci Technol 71:1569–1578

    Google Scholar 

  37. Saatchi MM, Shojaei A (2011) Mechanical performance of styrene-butadiene-rubber filled with carbon nanoparticles prepared by mechanical mixing. Mater Sci Eng A528:7161–7172

    Google Scholar 

  38. Kima J, Hyungu I, Chob MH (2011) Tribological performance of fluorinated polyimide-based nanocomposite coatings reinforced with PMMA-grafted- MWCNT. Wear 271:1029–1038

    Google Scholar 

  39. Hwang Y, Kim M, Kim J (2013) Improvement of the mechanical properties and thermal conductivity of poly (ether-ether-ketone) with the addition of graphene oxide-carbon nanotube hybrid fillers. Compos Part A 55:195–202

    Google Scholar 

  40. González I, Eguiazábal JI (2013) Widely dispersed PEI-based nanocomposites with multi-wall carbon nanotubes by blending with a masterbatch. Compos Part A 53:176–181

    Google Scholar 

  41. Nama TH, Goto K, Nakayama H, Oshima K, Premalal V, Shimamura Y, Inoue Y, Naito K, Kobayashi S (2014) Effects of stretching on mechanical properties of aligned multi-walled carbon nanotube/epoxy composites. Compos Part A 64:194–202

    Google Scholar 

  42. Chandrasekaran S, Sato N, Tölle F, Mülhaupt R, Fiedler B, Schulte K (2014) Fracture toughness and failure mechanism of graphene based epoxy composites. Compos Sci Technol 97:90–99

    Google Scholar 

  43. Huu Nam T, Goto K, Nakayama H, Oshima K, Premalal V, Shimamura Y, Inoue Y, Naito K, Kobayashi S (2014) Effects of stretching on mechanical properties of aligned multi-walled carbon nanotube/epoxy composites. Compos Part A 64:194–202

    Google Scholar 

  44. Muthu J, Dendere C (2014) Functionalized multiwall carbon nanotubes strengthened GRP hybrid composites: improved properties with optimum fiber content. Compos Part B 67:84–94

    Google Scholar 

  45. Martonea A, Formicola C, Giordano M, Zarrelli M (2010) Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites. Compos Sci Technol 20:1154–1160

    Google Scholar 

  46. Saatchi MM, Shojaei A (2011) Mechanical performance of styrene-butadiene-rubber filled with carbon nanoparticles prepared by mechanical mixing. Mater Sci Eng A 528:7161–7172

    Google Scholar 

  47. Pinto D, Bernardo L, Amaroa A, Lopes S (2015) Mechanical properties of epoxy nanocomposites using titanium dioxide as reinforcement. Constr Build Mater 95:506–524

    Google Scholar 

  48. Cheng X, Kumar V, Yokozeki T, Goto T, Takahashi T, Koyanagi J, Wud L, Wang R (2016) Highly conductive graphene oxide/polyaniline hybrid polymer nanocomposites with simultaneously improved mechanical properties. Compos Part A 82:100–107

    Google Scholar 

  49. Kang Y, Cui X, Dong Z, Chen W (2016) Preparation, microstructure and properties of chromium carbide/epoxy composite. Mater Des 92:356–361

    Google Scholar 

  50. Kashyap S, Pratihar SK, Behera SK Conventional nano-fillers used in polymer based matrix: strong and ductile graphene oxide reinforced PVA nano-composites. J Alloys Compd 24:211

    Google Scholar 

  51. Ali S, Boming Z, Changchun W (2013) Mechanical enhancement of carbon fiber/epoxy composites based on carbon nano-fibers by using spraying methodology. Appl Mech Mater 245:203–208

    Google Scholar 

  52. Sehaqui H, Morimune SB, Nishino TB, Berglund LA (2012) Stretchable and strong cellulose nanopaper structures based on polymer-coated nanofiber networks. Biomacromolecules 13(11):3661–3667

    Google Scholar 

  53. Zhou Y, Pervin F, Rangari VK, Jelani S (2006) Fabrication and evaluation of carbon nano fiber filled carbon/epoxy composite. Mater Sci Eng A 426(1–2):221–228

    Google Scholar 

  54. Ahmadi M, Masoomi M, Safi S (2015) Mechanical property characterization of carbon nanofiber/epoxynano-composites reinforced by GMA-grafted UHMWPE fibers. Compos Part-B 83:43–49

    Google Scholar 

  55. Arras MML, Schillai C, Keller TF, Schulze R, Jandt KD (2013) Alignment of multi-wall carbon nanotubes by disentanglement in ultra-thin melt-drawn polymer films. Carbon 60:366–378

    Google Scholar 

  56. FarshbafZinatia R, Razfara MR, Nazockdastba H (2014) Numerical and experimental investigation of FSP of PA 6/MWCNT composite. J Mater Process Technol 214:2300–2315

    Google Scholar 

  57. Yazdani H, Smith BE, Hatami K (2016) Multi-walled carbon nanotube-filled polyvinyl chloride composites: influence of processing method on dispersion quality, electrical conductivity and mechanical properties. Compos Part A 82:65–77

    Google Scholar 

  58. Tang L-C, Wan Y-J, Dong Y, Pei Y-B, Zhao L, Lic Y-B, Wu L-B, Jiang J-X, Lai G-Q (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27

    Google Scholar 

  59. Hallad SA, Banapurmath NR, Patil AY, Hunashyal AM, Shettar AS (2015) Studies on the effect of multi-walled carbon nanotube–reinforced polymer based nano-composites using finite element analysis software tool. Proc IMechE Part N: J Nanoeng Nanosys 230(4):200–212. https://doi.org/10.1177/1740349915599182

    Article  Google Scholar 

  60. Pontefisso A, Jr LM (2016) Nanomorphology of graphene and CNT reinforced polymer and its effect on damage: micromechanical numerical study. Compos Part B 96:338–349

    Google Scholar 

  61. Razfara MR, Nazockdast H, Farshbaf Zinati R (2014) Numerical and experimental investigation of FSP of PA 6/MWCNTcomposite. J Mater Process Technol 214:2300–2315

    Google Scholar 

  62. Penjumras P, Rahman RA, Talib RA, Abdan K (2015) Response surface methodology for the optimization of preparation of biocomposites based on poly(lactic acid) and durian peel cellulose. Sci World J 10(1155):12

    Google Scholar 

  63. Moghri M, Shamaee H, Shahrajabian H, Ghannadzadeh A (2015) The effect of different parameters on mechanical properties of PA-6/clay nanocomposite through genetic algorithm and response surface methods. Int Nano Lett 5(3):113–140

    Google Scholar 

  64. Chow WS (2008) Optimization of process variables on flexural properties of epoxy/organo-montmorillonite nanocomposite by response surface methodology. Express Polym Lett 2:2–11

    Google Scholar 

  65. Zare Y, Garmabi H, Sharif F (2011) Optimization of mechanical properties of PP/NAnoclay/CaCO3 ternanynoncomposite using response surface methodology. J Appl Polym Sci 122:3188–3200

    Google Scholar 

  66. Ghasemi FA, Ghasemi I, Menbari S, Ayaz M, Ashori A (2016) Optimization of mechanical properties of polypropylene/talc/graphene composites using response surface methodology. J Polym Testing 53:283–292

    Google Scholar 

  67. Li F, Xue J, Zhao J, Zhang S (2015) Graphene oxide: a promising nanomaterial for energy and environmental applications. Nano Energy 16:488–515

    Google Scholar 

  68. Yang SY, Chang KH, Tien HW, Lee YF, Li SM, Wang YS, Wang JY, Ma CCM, Hu CC (2011) Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors. J Mater Chem 21:2374–2380

    Google Scholar 

  69. De las Casas C, Li W (2012) A review of application of carbon nanotubes for lithium ion battery anode material. J Power Sources 208:74–85

    Google Scholar 

  70. Cao H, Wang X, Gu H, Liu J, Luan L, Liu W, Wang Y, Guo Z (2015) Carbon coated manganese monoxide octahedron negative-electrode for lithium-ion batteries with enhanced performance. RSC Adv 5:34566–34571

    Google Scholar 

  71. Li X, Gu H, Liu J, Wei H, Qiu S, Fu Y, Lv H, Lu G, Wang Y, Guo Z (2014) Multi-walled carbon nanotubes composited with nanomagnetite for anodes in lithium ion batteries. RSC Adv 5:7237–7244

    Google Scholar 

  72. Hu C, Guo S, Lu G, Fu Y, Liu J, Wei H, Yan X, Wang Y, Guo Z (2014) Carbon coating and Zn2+ doping of magnetite nanorods for enhanced electrochemical energy storage. Electrochim Acta 148:118–126

    Google Scholar 

  73. Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4:6337–6342

    Google Scholar 

  74. Zhang H, Li X, Zhao C, Fu T, Shi Y, Na H (2008) Composite membranes based on highly sulfonated PEEK and PBI: morphology characteristics and performance. J Membr Sci 308:66–74

    Google Scholar 

  75. Aj A, Foules FR (1989) Fuel cell handbook. Van Nostrand Reinhold, New York

    Google Scholar 

  76. Savadogo O (1998) Emerging membranes for electrochemical systems. I. Solid polymer electrolyte membranes for fuel cell systems. J New Mater Electrochem Syst 1:47–66

    Google Scholar 

  77. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352

    Google Scholar 

  78. Hamnett A (2003) Introduction to fuel-cell types. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells-fundamentals, technology and applications. Wiley, Chichester, pp 36–43

    Google Scholar 

  79. Doyle M, Rajendran G (2003) Perfluorinated membranes. In: Viel Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells-fundamentals, technology and applications. Wiley, Chichester, pp 351–395

    Google Scholar 

  80. Grot WG. Laminates of support material and fluorinated polymer containing pendant side chains containing sulfonyl groups. U.S. Patent: 3,770,567;1973

    Google Scholar 

  81. Xing PX, Robertson GP, Guiver MD, Mikhailenko SD, Kaliaguine S (2005) Synthesis and characterization of poly(aryl ether ketone) copolymers containing (hexafluoroisopropylidene)-diphenol moiety as proton exchange membrane materials. Polymer 46:3257–3263

    Google Scholar 

  82. Kayser MJ, Reinholdt MX, Kaliaguine S (2010) Amine grafted silica/SPEEK nanocomposites as proton exchange membranes. J Phys Chem B 114:8387–8395

    Google Scholar 

  83. Mohanty AK, Mistri EA, Banerjee S, Komber H, Brigitte V (2013) Highly fluorinated sulfonated poly(arylene ether sulfone) copolymers: synthesis and evaluation of proton exchange membrane properties. Ind Eng Chem Res 52:2772–2783

    Google Scholar 

  84. Shao ZG, Joghee P, Hsing IM (2004) Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells. J Membr Sci 229:43–51

    Google Scholar 

  85. Sxengu E, Erdener HL, Akay RG, Yucel H, Bac N, Eroglu I (2009) Effects of sulfonated polyether-etherketone (SPEEK) and composite membranes on the proton exchange membrane fuel cell (PEMFC) performance. Int J Hydrog Energy 34:4645–4652

    Google Scholar 

  86. Staiti P, Arico AS, Baglio V, Lufrano F, Passalacqua E, Antonucci V (2001) Hybrid Nafion–silica membranes dipped with HPA for applications in DMFC. Solid State Ionics 145:101–107

    Google Scholar 

  87. Hennepe HJCT, Bargeman D, Mulder MHV, Smolders CA (1987) Zeolite-filled silicone rubber membranes part I: membrane preparation and pervaporation results. J Membr Sci 35:39–55

    Google Scholar 

  88. Zhou XY, Weston J, Chalkova E, Hofmann MA, Ambler CM, Allcock HR, Lvov SN (2003) High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells. Electrochim Acta 48:2173–2180

    Google Scholar 

  89. Watanabe M, Uchida H, Emori M (1998) Polymer electrolyte membranes incorporated with nanometer-size particles of Pt and/or metal-oxides: experimental analysis of the self-humidification and suppression of gas-crossover in fuel cells. J Phys Chem 102:3129–3137

    Google Scholar 

  90. Zarrin H, Higgins D, Jun Y, Chen Z, Fowler M (2011) Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J Phys Chem C 115:20774–20781

    Google Scholar 

  91. Chien HC, Tsai LD, Huang CP, Kang CY, Lin JN, Chang FC (2013) Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells. Int J Hydrog Energy 38:13792–13801

    Google Scholar 

  92. Heo Y, Im H, Kim J (2013) The effect of sulfonated graphene oxide on sulfonated poly(ether ether ketone) membrane for direct methanol fuel cells. J Membr Sci 425:11–22

    Google Scholar 

  93. Sharma P, Bhatti TS (2010) A review on electrochemical double-layer capacitors. Energy Convers Manag 51:2901–2912

    Google Scholar 

  94. Boota M, Hatzell KB, Beidaghi M, Dennison CR, Kumbur EC, Gogotsi Y (2014) Activated carbon spheres as a flowable electrode in electrochemical flow capacitors. J Electrochem Soc 161:A1078–A1083

    Google Scholar 

  95. Omosebi A, Besser RS (2013) Electron beam patterned Nafion membranes for DMFC applications. J Power Sources 228:151–158

    Google Scholar 

  96. Jannasch P (2003) Recent developments in high-temperature proton conducting polymer electrolyte membranes. Curr Opin Colloid Interface Sci 8:96–102

    Google Scholar 

  97. Gahlot S, Sharma PP, Kulshrestha V, Jha PK (2014) SGO/SPES- based highly conducting polymer electrolyte membranes for fuel cell application. ACS Appl Mater Interfaces 6:5595–5601

    Google Scholar 

  98. Beydaghi H, Javanbakht M, ElahehKowsari (2014) Synthesis and characterization of poly (vinyl alcohol)/sulfonated graphene oxide nanocomposite membranes for use in proton exchange membrane fuel cells (PEMFCs). Ind Eng Chem Res 53(43):16621–16632

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaraj R. Banapurmath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Banapurmath, N.R. et al. (2019). Nanocomposites for Structural and Energy Applications. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_153

Download citation

Publish with us

Policies and ethics