Skip to main content

Synthesis Techniques for Preparation of Nanomaterials

  • Reference work entry
  • First Online:
Book cover Handbook of Ecomaterials

Abstract

Nanotechnology is concerned with the design, development, and application of nanomaterials and the essential empathizing of the associations among physical properties or phenomena and material dimensions. It deals with materials or structures in nanometers and is a novel field or a new technical area. Analogous to quantum mechanics, on the nanometer scale, materials or structures may have new physical properties or show new physical phenomena.

Nanomaterials have an enormously wide range of possible applications from nanoscale optics and electronics to nano-biological systems and nano-medicine. However, the study and applications of nanomaterials rely powerfully on the effective synthesis of nanomaterials. In addition, progress of simple and economical impending for the preparation of nanomaterials is vital for the applications of nanomaterials and the progress of nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Queenety KT, Friend CM (2000) J Phys Chem B 104:409

    Article  Google Scholar 

  2. Roy R (1989) Solid State Ionics 32–33:3

    Article  Google Scholar 

  3. Rao CNR, Agrawal VV, Biswas K, Gautam UK, Ghosh M, Govindaraj A, Kulkarni GU, Kalyanikutty KP, Sardar K, Vivekchand SRC (2006) Pure Appl Chem 78:1619–1650

    Article  Google Scholar 

  4. Thomson J Jr (1974) Am Ceram Soc Bull 53:421

    Google Scholar 

  5. Tu GC, Chen FH, Koo HS (1990) Supercond Sci Technol 3:134

    Article  Google Scholar 

  6. Wang H-W, David A-H, Sale FR (1992) J Am Ceram Soc 75:124

    Article  Google Scholar 

  7. Mallikarjuna NN, Venkataraman A (2001) Indian J Eng Mater Sci 8:303

    Google Scholar 

  8. Rao CNR, Gopalakrishnan J (1997) New directions in solid state chemistry. Cambridge University Press, Cambridge, p 122

    Google Scholar 

  9. Yanagida H, Koumoto K, Migayuma M (1996) The chemistry of ceramics. Wiley, Chichester, p 97

    Google Scholar 

  10. Rao KJ (1995) Perspectives in solid state chemistry. Narosa Publishing House, New Delhi, p 39

    Google Scholar 

  11. Segal D (1989) In: West AR, Baxter H (eds) Chemical synthesis of advanced ceramic materials. Chemistry of Solid State Materials. Cambridge University Press, Cambridge, p 33

    Google Scholar 

  12. Livage J (1997) Curr Opin Solid State Mater Sci 2:132

    Article  Google Scholar 

  13. Ricard-Poulet M, Vilminot S (1998) J Mater Chem 8:131

    Article  Google Scholar 

  14. Parkin IP, Rowley AT (1995) J Mater Chem 5:909. I.P. Parkin, Chem. Ind. (London), 1997, 725

    Article  Google Scholar 

  15. Merzhanov AG (1992) Adv Mater 4:294. Int. J. Self-Propag. High Temp. Synth., 4 (1995) 323

    Article  Google Scholar 

  16. Parkin IP (1996) Chem Soc Rev 25:199. P.R. Bonneau, R.F. Jarvis, R. B. Kaner, Nature, 349 (1991) 510

    Article  Google Scholar 

  17. Merzhanov AG (1995) Int J Self-Propag High Temp Synth 4:323

    Google Scholar 

  18. Pankhurst QA, Parkin IP (1998) Mater World 6:743

    Google Scholar 

  19. Palker VR (1999) Nanostruct Mater 11:369

    Article  Google Scholar 

  20. Herrig H, Hempelmann R (1996) Mater Lett 27:287

    Article  Google Scholar 

  21. Bruch C, Kruger JK, Unruch HG (1997) Ber Bunsenges Phys Chem 101:1761

    Article  Google Scholar 

  22. Hartl W, Beck C, Roth M, Meyer F, Hempelmann R (1997) Ber Bunsenges Phys Chem 101:1714

    Article  Google Scholar 

  23. Hung CH, Katz JL (1992) J Mater Res 7:1861

    Article  Google Scholar 

  24. Patil KC, Aruna ST, Ekambaram S (1997) Curr Opin Solid State Mater Sci 2:158–165

    Article  Google Scholar 

  25. Patil KC, Aruna ST (2002) In: Borisov AA, De Luca LT, Merzhanov AG, Scheck YN (eds) Redox methods in SHS practice in self-propagating high temperature synthesis of materials. Taylor & Francies, New York

    Google Scholar 

  26. Merzhanov AG (1999) SHS research and development handbook. Russian Academy of Sciences, Chernogolovka

    Google Scholar 

  27. Verma A (2001) Sci Am 283:44

    Google Scholar 

  28. Verma A, Rogachev AS, Mukasyan AS, Hwang S (1998) Adv Chem Eng 24:79–226

    Article  Google Scholar 

  29. Patil KC, Serkar MMA (1994) Int J Self-Propag High-Temp Synth 3:181–196

    Google Scholar 

  30. Baghurst DR, Mingos DMP (1992) J Chem Soc Chem Commun 674–677. https://doi.org/10.1039/C39920000674

  31. Baghurst DR, Chippindale AM, Mingos DMP (1988) Nature 332:311

    Article  Google Scholar 

  32. Vaidyanathan B, Ganguli M, Rao KJ (1995) Mater Res Bull 30:1173

    Article  Google Scholar 

  33. Arafat A, Jansen JC, Baid ARE, Bekkum HV (1993) Zeolites 13:162

    Article  Google Scholar 

  34. Baghurst DR, Mingos DMP (1988) J Chem Soc Chem Commun 829–830. https://doi.org/10.1039/C39880000829

  35. Zhang H, Ouyang S, Liu H, Li Y (1996) Mater Res Soc Symp Proc 430:447

    Article  Google Scholar 

  36. Wu CG, Bein T (1996) Chem Commun 925–926. https://doi.org/10.1039/CC9960000925

  37. Zijlstra S, de Groot TJ, Kok LP, Visser GM, Vaalburg W (1993) J Organomet Chem 58:1643

    Article  Google Scholar 

  38. Taylor MD, Roberts AD, Nickels R (1996) J Nucl Med Biol 23:605

    Article  Google Scholar 

  39. Patil D, Mutsuddy B, Grrard R (1992) J Microw Power Electromagn Energy 27:49

    Article  Google Scholar 

  40. Landry CC, Barron AR (1993) Science 260:1653

    Article  Google Scholar 

  41. Bond G, Moyes RS, Whan DA (1993) Catal Today 17:429

    Google Scholar 

  42. Yuji W, Hiromitsu K, Takao S, Hirotaro M, Takayuki S, Takayuki K, Shozo Y (1999) Chem Lett 7:607

    Google Scholar 

  43. Boxall DL, Deluga GA, Kenik EA, King WD, Lukehart CM (2001) Chem Mater 13:891

    Article  Google Scholar 

  44. Gallis KW, Landry CC (2001) Adv Mater 13:23

    Article  Google Scholar 

  45. Boxall DL, Lukehart CM (2001) Chem Mater 13:806

    Article  Google Scholar 

  46. Zhang Y, Qiao ZP, Chen XM (2002) J Solid State Chem 167:249. W. Tu, H. Liu, J. Mater. Chem., 10 (2000) 2207

    Article  Google Scholar 

  47. Komarneni S, Fregeau E, Breval E, Roy R (1998) J Am Ceram Soc 71:c26–c28

    Google Scholar 

  48. Chen Q, Rondinone AJ, Chakoumakos BC, Zhang ZJ (1999) J Magn Magn Mater 194:1

    Article  Google Scholar 

  49. Suresh K, Kumar NRS, Patil KC (1991) Adv Mater 3:148

    Article  Google Scholar 

  50. Albuquerque AS, Ardisson JD, Macedo WAA (1999) J Magn Magn Mater 192:277

    Article  Google Scholar 

  51. Gajbhiye NS, Prasad S, Balaji G (1999) IEEE Trans Magn 35:2155

    Article  Google Scholar 

  52. Yu H-F, Gadalla AM (1996) J Mater Res 11:663. M.P. Pileni, N. Moumen, J. Phys. Chem., 100 (1996) 1867

    Article  Google Scholar 

  53. Liu C, Zou B, Rondinone AJ, Zhang ZJ (2000) J Am Chem Soc 122:6263

    Article  Google Scholar 

  54. Dawson WJ (1988) Am Ceram Soc Bull 67:1673

    Google Scholar 

  55. Ozin GA (1997) Acc Chem Res 30:17

    Article  Google Scholar 

  56. Sarakaya M, Tamerler C, Jen AKY, Schulten K, Babeyx F (2003) Nat Mater 2:577

    Article  Google Scholar 

  57. Reiss BD, Mao C, Solis DJ, Ryan KS, Thomson T, Belcher AM (2004) Nano Lett 4:1127

    Article  Google Scholar 

  58. Martisen A, Skjak-Braek G, Smidsrod O (1989) Biotechnol Bioeng 33:79

    Article  Google Scholar 

  59. Pope NM, Alsop RC, Chang Y-A, Smith AK (1994) J Biomed Mater Res 28:449

    Article  Google Scholar 

  60. Wu P, Gao L, Guo J (2002) Mater Lett 57:115

    Article  Google Scholar 

  61. Guo Q, Teng X, Rahman S, Yang H (2003) J Am Chem Soc 125:630

    Article  Google Scholar 

  62. Rao CNR, Kulkarni GU, Thomas PJ, Agrawal VV, Saravanan P (2003) J Phys Chem B 107:7391

    Article  Google Scholar 

  63. Gautam UK, Ghosh M, Rao CNR (2003) Chem Phys Lett 381:1

    Article  Google Scholar 

  64. Gautam UK, Ghosh M, Rao CNR (2004) Langmuir 20:10775

    Article  Google Scholar 

  65. Rao CNR, Kulkarni GU, Agrawal VV, Gautam UK, Ghosh M, Tumkurkar U (2005) J Colloid Interface Sci 289:305

    Article  Google Scholar 

  66. Sarathy KV, Kulkarni GU, Rao CNR (1997) Chem Commun 537–538. https://doi.org/10.1039/A700738H

  67. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) J Chem Soc Chem Commun 801–802. https://doi.org/10.1039/C39940000801

    Article  Google Scholar 

  68. Lin Y, Skaff H, Dinsmore AD, Russell TP (2003) Science 299:226

    Article  Google Scholar 

  69. Rao CNR, Kulkarni GU, Thomas PJ, Agarwal VV, Gautam UK, Ghosh M (2003) Curr Sci 85:1041

    Google Scholar 

  70. Vaidhyanathan B, Balaji K, Rao KJ (1998) Chem Mater 10:3400

    Article  Google Scholar 

  71. Tu W, Liu H (2000) Chem Mater 12:564

    Article  Google Scholar 

  72. Ganachari SV, Bhat R, Deshpande R et al (2012) BioNano Sci 2:316

    Article  Google Scholar 

  73. Trevethan T et al (2006) Nanotechnology 17(23):5866

    Article  Google Scholar 

  74. Roco MC (2007) Handbook on Nanoscience, Engineering and Technology. 2nd ed. Taylor and Francis 3.1–3.26

    Google Scholar 

  75. Messing GL, Zhang SC, Jayanthi GV (1993) J Am Ceram Soc 76(11):2707

    Article  Google Scholar 

  76. Skanandan G, Chen Y-J, Glumac N, Kear BH (1999) Nanostruct Mater 11:149

    Article  Google Scholar 

  77. Cow GM, Gonsalves KE (eds) (1996) Nanotechnology, molecularly designed materials. American Chemical Society, Washington, DC, pp 64–78

    Google Scholar 

  78. Lindackers D, Janzen C, Rellinghaus B, Wassermann EF, Roth P (1998) Nanostruct Mater 10:1247

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaraj R. Banapurmath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ganachari, S.V. et al. (2019). Synthesis Techniques for Preparation of Nanomaterials. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_149

Download citation

Publish with us

Policies and ethics