Skip to main content

Thin Film Hydrogen Storages

  • Reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

This chapter systematizes the results of studies of the regularities of hydrogen absorption up to the concentrations of ~7 wt.% by thin films of magnesium, niobium, and vanadium. Distinctive features of the hydrides formation in single- and multilayer films have been demonstrated. It has been shown how such properties as electrical resistivity and optical transparency of thin films can correlate with the hydride formation process. The possibility of improving the kinetic and thermodynamic characteristics of thin films by forming a nanocrystalline structure and introducing catalysts has been analyzed. It has been shown that an increase in the gravimetric capacity of vanadium can be achieved due to nanoporous thin-film structures creating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kunstler JH (2009) The long emergency: surviving the end of oil, climate change, and other converging catastrophes of the twenty-first century, 2nd edn. Grove Press, New-York

    Google Scholar 

  2. Technical system targets: onboard hydrogen storage for light-duty fuel cell vehicles. https://energy.gov/sites/prod/files/2017/05/f34/fcto_myrdd_table_onboard_h2_storage_systems_doe_targets_ldv_1.pdf

  3. Vishnyakov V (2006) Proton exchange membrane fuel cells. Vacuum 80(10):1053–1065. https://doi.org/10.1016/j.vacuum.2006.03.029

    Article  Google Scholar 

  4. Züttel A, Sudan P, Mauron P et al (2002) Hydrogen storage in carbon nanostructures. Int J Hydrog Energy 27(2):203–212. https://doi.org/10.1016/S0360-3199(01)00108-2

    Article  Google Scholar 

  5. Jain I, Jain P, Jain A (2010) A novel hydrogen storage materials: a review of lightweight complex hydrides. J Alloys Compd 503(2):303–339. https://doi.org/10.1016/j.jallcom.2010.04.250

    Article  Google Scholar 

  6. Song M, Ivanov E, Darriet B et al (1985) Hydriding properties of a mechanically alloyed mixture with a composition Mg2Ni. Int J Hydrog Energy 10(3):169–178. https://doi.org/10.1016/0360-3199(85)90024-2

    Article  Google Scholar 

  7. Harris J, Curtin WA, Schultz L (1988) Hydrogen storage characteristics of mechanically alloyed amorphous metals. J Mater Res 3(5):872–883. https://doi.org/10.1557/JMR.1988.0872

    Article  Google Scholar 

  8. Aoki K, Memezava A, Masumoto T (1993) Atmosphere effects on the amorphization reaction in NiZr by ball milling. J Mater Res 8(2):307–313. https://doi.org/10.1557/JMR.1993.0307

    Article  Google Scholar 

  9. Doppiu S, Schultz L, Gutfleisch O (2007) In-situ pressure and temperature monitoring during the conversion of Mg into MgH2 by high-pressure reactive milling. J Alloys Compd 427:204–208. https://doi.org/10.1016/j.jallcom.2006.02.045

    Article  Google Scholar 

  10. Jain I, Vijay K, Malhotra L et al (1988) Hydrogen storage in thin film metal hydride – a review. Int J Hydrog Energy 13(1):15–23. https://doi.org/10.1016/0360-3199(88)90005-5

    Article  Google Scholar 

  11. Reilly J, Johnson J, Reidinger F et al (1980) Lattice expansion as a measure of surface segregation and the solubility of hydrogen in α-FeTiHx. J Less-Common Met 73(1):175–182. https://doi.org/10.1016/0022-5088(80)90358-6

    Article  Google Scholar 

  12. Malinovski M (1983) Some future directions for metal hydride surface studies: electrons as probes of hydrogen. J Less-Common Met 89(1):1–18. https://doi.org/10.1016/0022-5088(83)90243-6

    Article  Google Scholar 

  13. Eatons E, Olson C, Scheinberg Y et al (1981) Mechanically stable hydride composites designed for rapid cycling. Int J Hydrog Energy 6(6):609–613. https://doi.org/10.1016/0360-3199(81)90026-4

    Article  Google Scholar 

  14. Bryk V, Guglya A, Litvinenko M (2011) Mechanisms of nanoporous VN-Ar/He structure formation under high-energy ion bombardment. Radiat Eff Def Solids 166(4):282–287. https://doi.org/10.1080/10420150.2010.538928

    Article  Google Scholar 

  15. Goncharov A, Guglya A, Melnikova E (2012) On the feasibility of developing hydrogen storages capable of adsorption hydrogen both in its molecular and atomic states. Int J Hydrog Energy 37(23):18061–18073. https://doi.org/10.1016/j.ijhydene.2012.08.142

    Article  Google Scholar 

  16. Zaluska A, Zaluski L, Strom-Olsen J (1999) Nanocrystalline magnesium for hydrogen storage. J Alloys Compd 288(1–2):217–225. https://doi.org/10.1016/S0925-8388(99)00073-0

    Article  Google Scholar 

  17. Schlapbach L, Shaltiel D, Oelhafen P (1979) Catalytic effect in the hydrogenation of Mg and Mg compounds: Surface analysis of Mg-Mg2Ni and Mg2Ni. Mater Res Bull 14(9):1235–1246. https://doi.org/10.1016/0025-5408(79)90220-4

    Article  Google Scholar 

  18. Kroser A, Kasemo B (1989) Equilibrium hydrogen uptake and associated kinetics for the Mg-H2 system at low pressures. J Phys-Condens Matter 1(8):1533–1538. https://doi.org/10.1088/0953-8984/1/8/017

    Article  Google Scholar 

  19. Dehouche Z, Klassen T, Oelerich W et al (2002) Cycling and thermal stability of nanostructured MgH2–Cr2O3 composite for hydrogen storage. J Alloys Compd 347(1–2):319–323. https://doi.org/10.1016/S0925-8388(02)00784-3

    Article  Google Scholar 

  20. Zaluski L, Zaluska A, Ström-Olsen JO (1995) Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying. J Alloys Compd 217(2):245–249. https://doi.org/10.1016/0925-8388(94)01348-9

    Article  Google Scholar 

  21. Qu J, Sun B, Yang R et al (2010) Hydrogen absorption kinetics of Mg thin films under mild conditions. Scripta Mater 62(5):317–320. https://doi.org/10.1016/j.scriptamat.2009.11.033

    Article  Google Scholar 

  22. Yoshimura K (2012) Anomalous structure of palladium-capped magnesium thin films. Metals 2(3):253–257. https://doi.org/10.3390/met2030253

    Article  Google Scholar 

  23. Ares J, Leardini F, Díaz-Chao P et al (2010) Hydrogen desorption in nanocrystalline MgH2 thin films at room temperature. J Alloys Compd 495(2):650–654. https://doi.org/10.1016/j.jallcom.2009.10.110

    Article  Google Scholar 

  24. Eberle U, Felderhoff M, Schüth F (2009) Chemical and physical solutions for hydrogen storage. Angew Chem Int Edit 48(36):6608–6630. https://doi.org/10.1002/anie.200806293

    Article  Google Scholar 

  25. Moriwaki T, Akahama Y, Kawamura H et al (2006) Structural phase transition of rutile-type MgH2 at high pressures. J Phys Soc Jpn 75(7):074603. https://doi.org/10.1143/JPSJ.75.074603

    Article  Google Scholar 

  26. Vajeeston P, Ravindran P, Kjekshus A et al (2002) Pressure-induced structural transitions in MgH2. Phys Rev Lett 89(17):175506. https://doi.org/10.1103/PhysRevLett.89.175506

    Article  Google Scholar 

  27. Hum B, Junkaew A, Arroyave R et al (2013) Hydrogen sorption in orthorhombic Mg hydride at ultra-low temperature. Int J Hydrog Energy 38(20):8328–8341. https://doi.org/10.1016/j.ijhydene.2013.04.098

    Article  Google Scholar 

  28. Hum B, Junkaew A, Arróyave R et al (2014) Size and stress dependent hydrogen desorption in metastable Mg hydride films. Int J Hydrog Energy 39(6):2597–2607. https://doi.org/10.1016/j.ijhydene.2013.12.017

    Article  Google Scholar 

  29. Matsumoto I, Asano K, Sakaki K, Nakamura Y (2011) Hydrogen absorption kinetics of magnesium fiber prepared by vapor deposition. Int J Hydrog Energy 36(22):14488–14495. https://doi.org/10.1016/j.ijhydene.2011.08.029

    Article  Google Scholar 

  30. Higuchi K, Kajioka H, Toiyama K et al (1999) In situ study of hydriding–dehydriding properties in some Pd/Mg thin films with different degree of Mg crystallization. J Alloys Compd 293–295:484–489. https://doi.org/10.1016/S0925-8388(99)00470-3

    Article  Google Scholar 

  31. Bazzanella N, Checchetto R, Miotello A (2004) Catalytic effect on hydrogen desorption in Nb-doped microcrystalline MgH2. Appl Phys Lett 85(22):5212–5214. https://doi.org/10.1063/1.1829155

    Article  Google Scholar 

  32. Reddy G, Kumar S (2014) Reversible hydrogen storage in vapour deposited Mg-5 at.% Pd powder composites. Int J Hydrog Energy 39(9):4421–4426. https://doi.org/10.1016/j.ijhydene.2014.01.007

    Article  Google Scholar 

  33. Fry C, Grant D, Walker G (2013) Improved hydrogen cycling kinetics of nano-structured magnesium/transition metal multilayer thin films. Int J Hydrog Energy 38(2):982–990. https://doi.org/10.1016/j.ijhydene.2012.10.089

    Article  Google Scholar 

  34. Higuchi K, Yamamoto K, Kajioka H et al (2002) Remarkable hydrogen storage properties in three-layered Pd/Mg/Pd thin films. J Alloys Compd 330-332:526–530. https://doi.org/10.1016/S0925-8388(01)01542-0

    Article  Google Scholar 

  35. Tan X, Harrower C, Amirkhiz B et al (2009) Nano-scale bi-layer Pd/Ta, Pd/Nb, Pd/Ti and Pd/Fe catalysts for hydrogen sorption in magnesium thin films. Int J Hydrog Energy 34(18):7741–7748. https://doi.org/10.1016/j.ijhydene.2009.07.026

    Article  Google Scholar 

  36. Zahiri B, Amirkhiz S, Mitlin D (2010) Hydrogen storage cycling of MgH2 thin film nanocomposites catalyzed by bimetallic Cr Ti. Appl Phys Lett 97(8):083106. https://doi.org/10.1063/1.3479914

    Article  Google Scholar 

  37. Pranevicius L, Milcius D, Templier C et al (2009) Studies of Ms film and substrate coupling effects on hydrogenation properties. J Alloys Compd 488(1):360–363. https://doi.org/10.1016/j.jallcom.2009.08.133

    Article  Google Scholar 

  38. Mooij L, Dam B (2013) Hysteresis and the role of nucleation and growth in the hydrogenation of Mg nanolayers. Phys Chem Chem Phys 15:11501–11510. https://doi.org/10.1039/C3CP44441D

    Article  Google Scholar 

  39. Qu J, Wang Y, Xie L et al (2009) Hydrogen absorption–desorption, optical transmission properties and annealing effect of Mg thin films prepared by magnetron sputtering. Int J Hydrog Energy 34(4):1910–1915. https://doi.org/10.1016/j.ijhydene.2008.12.039

    Article  Google Scholar 

  40. Gautam Y, Chawla A, Khan S et al (2012) Hydrogen absorption and optical properties of Pd/Mg thin films prepared by DC magnetron sputtering. Int J Hydrog Energy 37(4):3772–3778. https://doi.org/10.1016/j.ijhydene.2011.04.041

    Article  Google Scholar 

  41. Borsa D, Gremaud R, Baldi A et al (2007) Structural, optical, and electrical properties of MgyTi1−yHx thin films. Phys Rev B 75(20):205408. https://doi.org/10.1103/PhysRevB.75.205408

    Article  Google Scholar 

  42. Cermak J, Kral L (2012) Ageing of Mg-Ni-H hydrogen storage alloys. Int J Hydrog Energy 37(19):14257–14264. https://doi.org/10.1016/j.ijhydene.2012.07.049

    Article  Google Scholar 

  43. Lohstroh W, Westerwaal R, Mechelen L et al (2004) Structural and optical properties of Mg2NiHx switchable mirrors upon hydrogen loading. Phys Rev B 70(16):165411. https://doi.org/10.1103/PhysRevB.70.165411

    Article  Google Scholar 

  44. Lohstroh W, Westerwaal R, Noheda D et al (2004) Self-organized layered hydrogenation in black Mg2NiHx switchable mirrors. Phys Rev Lett 93(19):197404. https://doi.org/10.1103/PhysRevLett.93.197404

    Article  Google Scholar 

  45. Veleckis E, Edwards R (1969) Thermodynamic properties in the systems vanadium-hydrogen, niobium-hydrogen, and tantalum-hydrogen. J Phys Chem 73(3):683–692. https://doi.org/10.1021/j100723a033

    Article  Google Scholar 

  46. Joubert J, Percheron-Guégan A (2001) Hydrogen absorption in vanadium- and niobium-based topologically close-packed structures. J Alloys Compd 317–318:71–76. https://doi.org/10.1016/S0925-8388(00)01359-1

    Article  Google Scholar 

  47. Kuriiwa T, Tamura T, Amemiya T et al (1999) New V-based alloys with high protium absorption and desorption capacity. J Alloys Compd 293–295:433–436. https://doi.org/10.1016/S0925-8388(99)00325-4

    Article  Google Scholar 

  48. Steiger J, Blässer S, Weidinger A (1994) Solubility of hydrogen in thin niobium films. Phys Rev B 49(8):5570–5574. https://doi.org/10.1103/PhysRevB.49.5570

    Article  Google Scholar 

  49. Moehlecke S, Majkrzak C, Stroning M (1985) Enhanced hydrogen solubility in niobium films. Phys Rev B 31(10):6804–6806. https://doi.org/10.1103/PhysRevB.31.6804

    Article  Google Scholar 

  50. Blässer S, Steiger J, Weidinger A (1994) In-situ hydrogen charging of thin Nb films and depth profiling with the 1H(15N, αγ)12C nuclear reaction. Nucl Instrum Method B 85:24–27. https://doi.org/10.1016/0168-583X(94)95778-9

    Article  Google Scholar 

  51. Reisfeld G, Jisrawi N, Ruckman M et al (1996) Hydrogen absorption by thin Pd/Nb films deposited on glass. Phys Rev B 53(8):4974–4979. https://doi.org/10.1103/PhysRevB.53.4974

    Article  Google Scholar 

  52. Rehm C, Fritzsche H, Maletta H et al (1999) Hydrogen concentration and its relation to interplanar spacing and layer thickness of 1000-Å Nb(110) films during in situ hydrogen charging experiments. Phys Rev B 59(4):3142–3152. https://doi.org/10.1103/PhysRevB.59.3142

    Article  Google Scholar 

  53. Miceli P, Zabel H, Cunningham J (1985) Hydrogen-induced strain modulation in Nb-Na superlattices. Phys Rev Lett 54(9):917–919. https://doi.org/10.1103/PhysRevLett.54.917

    Article  Google Scholar 

  54. Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hydrog Energy 32(9):1121–1140. https://doi.org/10.1016/j.ijhydene.2006.11.022

    Article  Google Scholar 

  55. Yukawa H, Takagi M, Teshima A et al (2002) Alloying effects on the stability of vanadium hydrides. J Alloys Compd 330–332:105–109. https://doi.org/10.1016/S0925-8388(01)01526-2

    Article  Google Scholar 

  56. Andersson G, Aits K, Hjörvarsson B (2002) Hydrogen uptake of thin epitaxial vanadium (001) films. J Alloys Compd 334(1–2):14–19. https://doi.org/10.1016/S0925-8388(01)01743-1

    Article  Google Scholar 

  57. Bloch J, Hjörvarsson B, Olsson S et al (2007) Reversible structural change and thermodynamic properties of hydrogen in thin vanadium films. Phys Rev B 75(16):65418. https://doi.org/10.1103/PhysRevB.75.165418

    Article  Google Scholar 

  58. Andersson G, Hjörvarsson B, Isberg P (1997) Influence of compressive biaxial strain on the hydrogen uptakeof ultrathin single-crystal vanadium layers. Phys Rev B 55(3):1774–1781. https://doi.org/10.1103/PhysRevB.55.1774

    Article  Google Scholar 

  59. Andersson G, Hjörvarsson B, Zabel H (1997) Hydrogen-induced lattice expansion of vanadium in a Fe/V (001) single-crystal superlattice. Phys Rev B 55(23):15905–15911. https://doi.org/10.1103/PhysRevB.55.15905

    Article  Google Scholar 

  60. Hjörvarsson B, Rydén J, Karlsson E et al (1991) Interface effects of hydrogen uptake in Mo/V single-crystal superlattices. Phys Rev B 43(8):6440–6445. https://doi.org/10.1103/PhysRevB.43.6440

    Article  Google Scholar 

  61. Stillesjö F, Ólafsson S, Isberg P et al (1995) Thermodynamic properties of hydrogen in quasi-two-dimensional vanadium lattices. J Phys-Condens Matter 7(42):8139–8144. https://doi.org/10.1088/0953-8984/7/42/010

    Article  Google Scholar 

  62. Griessen R, Riesterer T (1988) Heat of formation models. In: Schlapbach L (ed) Hydrogen in intermetallic compounds I. Topics in applied physics, vol 63. Springer, Berlin, pp 219–284

    Google Scholar 

  63. Orimo S, Kimmerle F, Majer G (2001) Hydrogen in nanostructured vanadium-hydrogen systems. Phys Rev B 63(9):094307–094310. https://doi.org/10.1103/PhysRevB.63.094307

    Article  Google Scholar 

  64. Belyakov L, Makarova T, Sakharov V et al (1998) Composition and porosity of multicomponent structures: porous silicon as a three-component system. Semiconductors 32(9):1003–1010. https://doi.org/10.1134/1.1187534

    Article  Google Scholar 

  65. Bryk V, Vasilenko R, Goncharov A et al (2011) Formation mechanism, structure and adsorption characteristics microporous nanocrystalline thin-film (V,Ti)-N-He composites. J Surf Investig-X-ray 5(3):566–574. https://doi.org/10.1134/S1027451011060061

    Article  Google Scholar 

  66. Wang YQ (2004) Hydrogen standards in elastic recoil detection analysis. Nucl Instrum Method B 219–220:115–124. https://doi.org/10.1016/j.nimb.2004.01.038

    Article  Google Scholar 

  67. Bryk V, Guglya A, Kalchenko A et al (2015) Hydrogen storage in VNx – Hy thin films. Open Access Libr J 2: e2228. https://doi.org/10.4236/oalib.1102228, 1

    Article  Google Scholar 

  68. Guglya A, Kalchenko A, Solopikhina E et al (2016) Nanocrystalline porous thin film VNx hydrogen absorbents: method of production, structure and properties. J Adv Nanomater 1(1):1–10. https://doi.org/10.22606/jan.2016.11001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey Guglya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Guglya, A., Lyubchenko, E. (2019). Thin Film Hydrogen Storages. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_144

Download citation

Publish with us

Policies and ethics