Porous Materials Obtained from Nonconventional Sources Used in Wastewater Treatment Processes

  • E. Coutino-Gonzalez
  • I. Robles-Gutiérrez
  • M. Solís-López
  • F. Espejel-AyalaEmail author
Reference work entry


The acute problem of (agro)industrial waste generation is reaching alarming values. Most of this waste is not properly treated and often disposed in landfills where they contribute to the environmental pollution due to the production of harmful leachates. However, novel synthetic approaches are being nowadays explored to produce functional porous materials starting from (agro)industrial waste, also called nonconventional sources, to fabricate eco-materials that can be utilized in decontamination processes imparting to such materials and added (ecologic and economic) value. Recent advances in the production of zeolites using industrial waste streams as precursors and biosorbent materials generated from agroindustrial waste will be addressed in this chapter, as well as their potential use in wastewater treatment.


  1. 1.
    Halada K (2003) Progress of ecomaterials toward a sustainable society. Curr Opin Solid State Mater Sci 7:209–216CrossRefGoogle Scholar
  2. 2.
    Umezawa O, Shinohara Y, Halada K (2014) New aspects of ecomaterials from the viewpoints of the consumer and regional communities. Mater Trans 55:745–749CrossRefGoogle Scholar
  3. 3.
    Halada K, Yamamoto R (2001) The current status of research and development on eco-materials around the world. MRS Bull 26:871–878CrossRefGoogle Scholar
  4. 4.
    Yagi K (2000) Materials development for sustainable society – ecomaterials. In: Proceedings of the international symposium on ecomaterials held in conjunction with the 39th annual conference of metallurgist of CIM Ottawa, Ontario, Canada, 3–13Google Scholar
  5. 5.
    Koltum P (2010) Materials and sustainable development. Prog Nat Sci 20:16–29CrossRefGoogle Scholar
  6. 6.
    Shih W-H, Chang H-L (1996) Conversion of fly ash into zeolites for ion-exchange applications. Mater Lett 28:263–268CrossRefGoogle Scholar
  7. 7.
    Espejel-Ayala F, Schouwenaars R, Duran-Moreno A, Ramirez-Zamora RM (2014) Use of drinking water sludge in the production process of zeolites. Res Chem Intermed 40:2919–2928CrossRefGoogle Scholar
  8. 8.
    Espejel-Ayala F, Chora-Corella R, Morales-Perez A, Perez-Hernandez R, Ramirez-Zamora RM (2014) Carbon dioxide capture utilizing zeolites synthesized with paper sludge and scrap-glass. Waste Manag Res 32:1219–1226CrossRefGoogle Scholar
  9. 9.
    Querol X, Moreno N, Umana JC, Alastuey A, Hernandez E, Lopez-Soler A, Plana F (2002) Synthesis of zeolites from coal fly ash: an overview. Int J Coal Geol 50:413–423CrossRefGoogle Scholar
  10. 10.
    Wdowin M, Franus M, Panek R, Badura L, Franus W (2014) The conversion technology of fly ash into zeolites. Clean Techn Environ Policy 16:1217–1223CrossRefGoogle Scholar
  11. 11.
    Boonamnuayvitaya V, Sae-ung S, Tanthapanichakoon W (2005) Preparation of activated carbons from coffee residue for the adsorption of formaldehyde. Sep Purif Technol 42:159–168CrossRefGoogle Scholar
  12. 12.
    Gao JJ, Kong DD, Wang YF, Wu J, Sun SL, Xu P (2013) Production of mesoporous activated carbon from tea fruit peel residues and its evaluation of methylene blue removal from aqueous solutions. Bioresources 8:2145–2160Google Scholar
  13. 13.
    Rodriguez-Reinoso F, Molina-Sabio M (1992) Activated carbons from lignocellulosic materials by chemical and/or physical activation: and overview. Carbon 30:1111–1118CrossRefGoogle Scholar
  14. 14.
    Hashemian S, Salari K, Yazdi A (2014) Preparation of activated carbon from agricultural wastes (almond shell and orange peel) for adsorption of 2-pic from aqueous solution. J Ind Eng Chem 20:1892–1900CrossRefGoogle Scholar
  15. 15.
    Xie Z, Guan W, Ji F, Song Z, Zhao Y (2014) Production of biologically activated carbon from orange peel. J Chemother 2014:1–9Google Scholar
  16. 16.
    Bhatnagar A, Sillanpaa M (2010) Utilisation of agro-industrial and municipal waste as potential adsorbents for water treatment – a review. Chem Eng J 157:277–296CrossRefGoogle Scholar
  17. 17.
    Koshy N, Singh DN (2016) Fly ash zeolites for water treatment applications. J Environ Chem Eng 4:1460–1472CrossRefGoogle Scholar
  18. 18.
    Sun Z, Li C, Wu D (2010) Removal of methylene blue from aqueous solution by adsorption onto zeolite synthesized from coal fly ash and its thermal regeneration. J Chem Technol Biotechnol 85:845–850CrossRefGoogle Scholar
  19. 19.
    Cundy CS, Cox PA (2003) The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem Rev 103:663–701CrossRefGoogle Scholar
  20. 20.
    Barrer RM (1948) Synthesis of a zeolitic mineral with chabazite-like sorptive properties. J Chem Soc 0:127–132Google Scholar
  21. 21.
    Milton RM (1959) US Patent 2,882,243Google Scholar
  22. 22.
    Barrer RM (1982) Hydrothermal chemistry of zeolites. Academic, New York, pp 360–365Google Scholar
  23. 23.
    Ostwald W (1896) Lehrbuch der Allgemeinen Chemie. Engelmann, vol 2, part 1. LeipzigGoogle Scholar
  24. 24.
    Ríos C, Williams CD, Roberts CL (2008) Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites. J Hazard Mater 156:23–35CrossRefGoogle Scholar
  25. 25.
    Molina A, Poole C (2004) A comparative study using two methods to produce zeolites from fly ash. Miner Eng 17:167–173CrossRefGoogle Scholar
  26. 26.
    Ball WJ, Dwyer J, Garforth AA, Smith WJ (1986) The synthesis and characterization of iron silicate molecular sieves. Stud Surf Sci Catal 28:137–144CrossRefGoogle Scholar
  27. 27.
    Basaldella EI, Torres RM, Tara JC (1998) Iron influence in the aluminosilicate zeolites synthesis. Clay Miner 46:481–486CrossRefGoogle Scholar
  28. 28.
    Yaping Y, Xiaoqiang Z, Weilan Q, Mingwen W (2008) Synthesis of pure zeolites from supersaturated silicon and aluminum alkali extracts from fused coal fly ash. Fuel 87:1880–1886CrossRefGoogle Scholar
  29. 29.
    Juan R, Hernández S, Andrés JM, Ruiz C (2007) Synthesis of granular zeolitic materials with high cation exchange capacity from agglomerated coal fly ash. Fuel 86:1811–1821CrossRefGoogle Scholar
  30. 30.
    Gross M, Soulard M, Caullet P, Patarin J, Saude I (2007) Synthesis of faujasite from coal fly ashes under smooth temperature and pressure conditions: a cost saving process. Microporous Mesoporous Mater 104:67–76CrossRefGoogle Scholar
  31. 31.
    Wu D, Sui Y, Chen X, He S, Wang X, Kong H (2008) Changes of mineralogical-chemical composition, cation exchange capacity, and phosphate immobilization capacity during the hydrothermal conversion process of coal fly ash into zeolite. Fuel 87:2194–2200CrossRefGoogle Scholar
  32. 32.
    Querol X, Alastuey A, Fernández-Turiel JL, López-Soler A (1995) Synthesis of zeolites by alkaline activation of ferro-aluminous fly ash. Fuel 74:1226–1231CrossRefGoogle Scholar
  33. 33.
    Poole C, Pritajama H, Rice N (2000) Synthesis of zeolites adsorbents by hydrothermal treatment of PFA wastes: a comparative study. Miner Eng 13:831–842CrossRefGoogle Scholar
  34. 34.
    Murayama N, Takahashi T, Shuku K, Lee H, Shibata J (2008) Effect of reaction temperature on hydrothermal synthesis of potassium type zeolites from coal fly ash. Int J Miner Process 87:129–133CrossRefGoogle Scholar
  35. 35.
    Somerset VS, Petrik LF, White RA, Klink MJ, Key D, Iwuoha E (2003) The use of X-ray fluorescence (XRF) analysis in predicting the alkaline hydrothermal conversion of fly ash precipitates into zeolites. Talanta 64:109–114CrossRefGoogle Scholar
  36. 36.
    Derkowski A, Franus W, Beran E, Czimerova A (2006) Properties and potential applications of zeolitic materials produced from fly ash using simple method of synthesis. Powder Technol 166:47–54CrossRefGoogle Scholar
  37. 37.
    Watanabe Y, Yamada H, Tanaka J, Komatsu Y, Moriyoshi Y (2004) Ammonium ion exchange of synthetic zeolites: the effect of their open-window sizes, pore structures, and cation exchange capacities. Sep Sci Technol 39:2091–2104CrossRefGoogle Scholar
  38. 38.
    Ghrib Y, Frini-Srasra N, Srasra E (2016) Synthesis of NaX and NaY zeolites from Tunisian kaolinite as base catalysts: an investigation of Knoevenagel condensation. J Chin Chem Soc 63:601–610CrossRefGoogle Scholar
  39. 39.
    Ghrib Y, Frini-Srasra N, Srasa E (2017) Synthesis of ZSM-5 zeolite from metakaolinite: effects of the SiO2/Al2O3 molar ratio, the initial precursor and the presence of organic template agent. Surf Eng Appl Electrochem 53:64–70CrossRefGoogle Scholar
  40. 40.
    Villaquirán-Caicedo MA, De Gutiérrez RM, Gordillo M, Gallego NC (2016) Synthesis of zeolites from a low-quality Colombian kaolin. Clay Clay Miner 64:75–85CrossRefGoogle Scholar
  41. 41.
    Bauer A, Velde B, Berger G (1998) Kaolinite transformation in high molar KOH solutions. Appl Geochem 13:619–629CrossRefGoogle Scholar
  42. 42.
    Belver C, Bañares MA, Vicente MA (2004) Materiales con propiedades tecnológicas obtenidos por modificación química de un caolín natural. Bol Soc Esp Ceram Vidrio 43:148–154CrossRefGoogle Scholar
  43. 43.
    Covarrubias C, García R, Arriagada R, Yanez J, Garland MT (2006) Cr(III) exchange on zeolites obtained from kaolin and natural mordenite. Microporous Mesoporous Mater 88:220–231CrossRefGoogle Scholar
  44. 44.
    Youssef H, Ibrahim D, Komarneni S (2008) Microwave-assisted versus conventional synthesis of zeolite a from metakaolinite. Microporous Mesoporous Mater 115:527–534CrossRefGoogle Scholar
  45. 45.
    Ugal JR, Hassan KH, Ali IH (2010) Preparation of type 4A zeolite from Iraqi kaolin: characterization and properties measurements. J Assoc Arab Univ Basic Appl Sci 9:2–5Google Scholar
  46. 46.
    Belciso C, Cavalcante F, Lettino A, Fiore S (2013) A and X-type zeolites synthesized from kaolinite at low temperature. Appl Clay Sci 80-81:162–168CrossRefGoogle Scholar
  47. 47.
    Ma Y, Yan C, Alshameri A, Qiu X, Zhou C, Li D (2014) Synthesis and characterization of 13X zeolite from low-grade natural kaolin. Adv Power Technol 25:495–499CrossRefGoogle Scholar
  48. 48.
    Wang W, Feng Q, Liu K, Zhang G, Liu J, Huang Y (2015) A novel magnetic 4A zeolite adsorbent synthesized from kaolinite type pyrite cinder (KTPC). Sol State React 39:52–58CrossRefGoogle Scholar
  49. 49.
    Sudo T, Matsuoka M (1958) Artificial crystallization of volcanic glass to sodalite and zeolite structure. Geochim Cosmochim Acta 17:1–5CrossRefGoogle Scholar
  50. 50.
    Gilbert JE, Mosset A (1998) Large crystals of mordenite and MFI zeolites. Mater Res Bull 33:997–100334CrossRefGoogle Scholar
  51. 51.
    Novembre D, Di Sabatino B, Gimeno D, Garcia-Valles M, Martínez-Manent S (2004) Synthesis of Na-X zeolites from tripolaceous deposits (Crotone, Italy) and volcanic zeolitised rocks (Vico volcano, Italy). Microporous Mesoporous Mater 75:1–11CrossRefGoogle Scholar
  52. 52.
    Wajima T, Haga M, Kuzawa K, Ishimoto H, Tamada O, Ito K, Nishiyama T, Downs RT, Rakovan JF (2005) Zeolite synthesis form paper sludge ash at low temperature (90 °C) with addition of diatomite. J Hazard Mater 132:244–252CrossRefGoogle Scholar
  53. 53.
    Wu D, Lu Y, Kong H, Ye C, Jin X (2008) Synthesis of zeolite from thermally treated sediment. Ind Eng Chem Res 47:295–302CrossRefGoogle Scholar
  54. 54.
    Anuwattana R, Khummongkol P (2009) Conventional hydrothermal synthesis of Na-A zeolite from cupola slag and aluminum sludge. J Hazard Mater 166:227–232CrossRefGoogle Scholar
  55. 55.
    Hiraki T, Nosaka A, Okinaka N, Akiyama T (2009) Synthesis of zeolite-X from waste metals. ISIJ Int 49:1644–1648CrossRefGoogle Scholar
  56. 56.
    Lohia S, Prayoonpokarach S, Songsiriritthigun P, Wittayakun J (2009) Synthesis of zeolite beta with pretreated rice husk silica and its transformation to ZSM-12. Mater Chem Phys 115:637–640CrossRefGoogle Scholar
  57. 57.
    Basaldella EI, Torres Sánchez RM, Conconi MS (2009) Conversion of exhausted fluid craking into zeolites by alkaline fusion. Appl Clay Sci 42:611–614CrossRefGoogle Scholar
  58. 58.
    Rocco FR, Savastano H, Fiorelli J (2015) Non-conventional building materials based on agro-industrial wastes, 1st edn. Tiliform, Bauru, Sao Paulo, Brazil p 179–218Google Scholar
  59. 59.
    Ahmedna M, Marshall WE, Rao RM (2000) Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties. Bioresour Technol 71:113–123CrossRefGoogle Scholar
  60. 60.
    Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energy Sources 24(5):471–482CrossRefGoogle Scholar
  61. 61.
    Prahas D, Kartika Y, Indraswati N, Ismadji S (2008) Activated carbon from jackfruit peel waste by H3PO4 chemical activation: pore structure and surface chemistry characterization. Chem Eng J 140:32–42CrossRefGoogle Scholar
  62. 62.
    Li H, Sun Z, Zhang L, Tian Y, Cui G, Yan S (2016) A cost-effective porous carbon derived from pomelo peel for the removal of methyl orange from aqueous solution. Colloids Surf A Physicochem Eng Asp 489:191–199CrossRefGoogle Scholar
  63. 63.
    Lv Y, Gan L, Liu M, Xiong W, Xu Z, Zhu D, Wright DS (2012) A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes. J Power Sources 209:152–157CrossRefGoogle Scholar
  64. 64.
    Taha MF, Ibrahim MHC, Shaharun MS, Chong FK (2012) Adsorptive removal of Zn(II) ion from aqueous solution using rice husk-based activated carbon. AIP Conf Proc 1482:252–257CrossRefGoogle Scholar
  65. 65.
    Montané D, Torné-Fernández V, Fierro V (2005) Activated carbons from lignin: kinetic modeling of the pyrolysis of Kraft lignin activated with phosphoric acid. Chem Eng J 106:1–12CrossRefGoogle Scholar
  66. 66.
    László K, Podkoscielny P, Dabrowski A (2003) Heterogeneity of polymer-based active carbons in adsorption of aqueous solutions of phenol and 2,3,4-trichlorophenol. Langmuir 13:5287–5294CrossRefGoogle Scholar
  67. 67.
    Schwickardi M, Johann T, Schmidt W, Schüth F (2002) High-surface-area oxides obtained by an activated carbon route. Chem Mater 9:3913–3919CrossRefGoogle Scholar
  68. 68.
    Podkościelny P, Dąbrowski A, Marijuk OV (2003) Heterogeneity of active carbons in adsorption of phenol aqueous solutions. Appl Surf Sci 205:297–303CrossRefGoogle Scholar
  69. 69.
    Noli F, Buema G, Misaelides P, Harja M (2015) New materials synthesized from ash under moderate conditions for removal of toxic and radioactive metals. J Radioanal Nucl Chem 303:2303–2311Google Scholar
  70. 70.
    Xie Q, Lin Y, Wu D, Kong H (2017) Performance of surfactant modified zeolite/hydrous zirconium oxide as a multi-functional adsorbent. Fuel 203:411–418CrossRefGoogle Scholar
  71. 71.
    Meher AK, Das S, Rayalu S, Bansiwal A (2016) Enhanced arsenic removal from drinking water by iron-enriched aluminosilicate adsorbent prepared from fly ash. Desalin Water Treat 57:20944–20956Google Scholar
  72. 72.
    Chen X, Wendell K, Jun Z, Li J, Yu X, Zhang Z (2012) Synthesis of nano-zeolite from coal fly ash and its potential for nutrient sequestration from anaerobically digested swine wastewater. Bioresour Technol 110:79–85CrossRefGoogle Scholar
  73. 73.
    Cardoso MA, Horn MB, Ferret LS, Azevedo CMN, Pires M (2015) Integrated synthesis of zeolites 4A and Na-P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment. J Hazard Mater 287:69–77CrossRefGoogle Scholar
  74. 74.
    Iqbal M, Saeed A, Zafar SI (2009) FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J Hazard Mater 164:161–171CrossRefGoogle Scholar
  75. 75.
    Bao ML, Griffini O, Santianni D, Barbieri K, Burrini D, Pantani F (1999) Removal of bromate ion from water using granular activated carbon. Water Res 33:2959–2970CrossRefGoogle Scholar
  76. 76.
    Forgacs E, Cserháti T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971CrossRefGoogle Scholar
  77. 77.
    Ahmaruzzaman M, Sharma DK (2005) Adsorption of phenols from wastewater. J Colloid Interface Sci 287:14–24CrossRefGoogle Scholar
  78. 78.
    Bele M, Kodre A, Arcon I, Grdadolnik J, Pejovnik S, Besenhard JO (1998) Adsorption of cetyltrimethylammonium bromide on carbon black from aqueous solution. Carbon 36:1207–1212CrossRefGoogle Scholar
  79. 79.
    Gupta VK, Ali I, Saini VK (2007) Defluoridation of wastewaters using waste carbon slurry. Water Res 41:3307–3316CrossRefGoogle Scholar
  80. 80.
    McCreary JJ, Snoeyink VL (1980) Characterization and activated carbon adsorption of several humic substances. Water Res 14:151–160CrossRefGoogle Scholar
  81. 81.
    Jha VK, Matsuda M, Miyake M (2008) Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni2+, Cu2+, Cd2+ and Pb2+. J Hazard Mater 160:148–153CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • E. Coutino-Gonzalez
    • 1
  • I. Robles-Gutiérrez
    • 2
  • M. Solís-López
    • 3
    • 4
  • F. Espejel-Ayala
    • 2
    Email author
  1. 1.CONACYT – Centro de Investigación y Desarrollo Tecnológico en ElectroquímicaQuerétaroMéxico
  2. 2.Centro de Investigación y Desarrollo Tecnológico en ElectroquímicaQuerétaroMéxico
  3. 3.Facultad de Ingeniería, Departamento de Materiales y ManufacturaDIMEI, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
  4. 4.Programa de Nanociencias y NanotecnologíaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)Ciudad de MéxicoMéxico

Personalised recommendations