Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

RPT

  • Julie A. Maupin-Furlow
  • Hugo V. Miranda
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_65

Synonyms

Historical Background

Regulatory particle triple-A (Rpt) subunits are associated with the ubiquitin-proteasome system, a central mechanism of protein breakdown with a rich historical background. Aaron Ciechanover, Avram Hershko, and Irwin Rose were awarded the 2004 Nobel Prize in Chemistry for their “discovery of ubiquitin-mediated protein degradation” by proteasomes and have outlined some of this history in reviews (e.g., Ciechanover 2010). The term “proteasome” was first coined by Arrigo et al. (1988) for a “large alkaline multifunctional protease” known to mediate energy-dependent intracellular protein breakdown, once it was clear that this protease was related to the ring-shaped “prosomes” of unknown function commonly found in eukaryotic cells. The Rpt nomenclature was later...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

This work was funded in part by grants from the National Institutes of Health (GM57498) and the Department of Energy Office of Basic Energy Sciences (DE-FG02-05ER15650).

References

  1. Arrigo AP, Tanaka K, Goldberg AL, Welch WJ. Identity of the 19S ‘prosome’ particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature. 1988;331(6152):192–4. doi:10.1038/331192a0.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bar-Nun S, Glickman MH. Proteasomal AAA-ATPases: structure and function. Biochim Biophys Acta. 2011. doi:10.1016/j.bbamcr.2011.07.009.CrossRefGoogle Scholar
  3. Burns KE, Darwin KH. Pupylation versus ubiquitylation: tagging for proteasome-dependent degradation. Cell Microbiol. 2010;12:424–31.PubMedPubMedCentralGoogle Scholar
  4. Ciechanover A. The ubiquitin system: historical perspective. Proc Am Thorac Soc. 2010;7:11–2. doi:10.1513/pats.200908-095JS.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Finley D, Tanaka K, Mann C, Feldmann H, Hochstrasser M, Vierstra R, Johnston S, Hampton R, Haber J, Mccusker J, Silver P, Frontali L, Thorsness P, Varshavsky A, Byers B, Madura K, Reed SI, Wolf D, Jentsch S, Sommer T, Baumeister W, Goldberg A, Fried V, Rubin DM, Toh-e A, et al. Unified nomenclature for subunits of the Saccharomyces cerevisiae proteasome regulatory particle. Trends Biochem Sci. 1998;23:244–5. doi:10.1016/S0968-0004(98)01222-5.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Humbard MA, Miranda HV, Lim JM, Krause DJ, Pritz JR, Zhou G, Chen S, Wells L, Maupin-Furlow JA. Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature. 2010;463:54–60.PubMedPubMedCentralGoogle Scholar
  7. Kodadek T. No Splicing, no dicing: non-proteolytic roles of the ubiquitin-proteasome system in transcription. J Biol Chem. 2010;285:2221–6.PubMedPubMedCentralGoogle Scholar
  8. Kusmierczyk AR, Kunjappu MJ, Kim RY, Hochstrasser M. A conserved 20S proteasome assembly factor requires a C-terminal HbYX motif for proteasomal precursor binding. Nat Struct Mol Biol. 2011;18:622–9. doi:10.1038/nsmb.2027.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Miranda HV, Nembhard N, Su D, Hepowit N, Krause DJ, Pritz JR, Phillips C, Söll D, Maupin-Furlow JA. E1- and ubiquitin-like proteins provide a direct link between protein conjugation and sulfur transfer in archaea. Proc Natl Acad Sci USA. 2011;108:4417–22.PubMedPubMedCentralGoogle Scholar
  10. Navon A, Ciechanover A. The 26S proteasome: from basic mechanisms to drug targeting. J Biol Chem. 2009;284:33713–8. doi:10.1074/jbc.R109.018481.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Navon A, Goldberg AL. Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol Cell. 2001;8:1339–49. doi:10.1016/S1097-2765(01)00407-5.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Peth A, Uchiki T, Goldberg AL. ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation. Mol Cell. 2010;40(4):671–81. doi:10.1016/j.molcel.2010.11.002.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ravid T, Hochstrasser M. Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol. 2008;9:679–90.PubMedPubMedCentralGoogle Scholar
  14. Sauer RT, Baker TA. AAA+ proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem. 2011;80:587–612.PubMedPubMedCentralGoogle Scholar
  15. Schrader EK, Harstad KG, Matouschek A. Targeting proteins for degradation. Nat Chem Biol. 2009;5:815–22. doi:10.1038/nchembio.250.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Stadtmueller BM, Hill CP. Proteasome activators. Mol Cell. 2011;41:8–19. doi:10.1016/j.molcel.2010.12.020.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Tomko Jr RJ, Hochstrasser M. Order of the proteasomal ATPases and eukaryotic proteasome assembly. Cell Biochem Biophys. 2011;60:13–20.Google Scholar
  18. Wollenberg K, Swaffield JC. Evolution of proteasomal ATPases. Mol Biol Evol. 2001;18:962–74.PubMedPubMedCentralGoogle Scholar
  19. Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell. 2009;137:133–45.PubMedPubMedCentralGoogle Scholar
  20. Zhang F, Wu Z, Zhang P, Tian G, Finley D, Shi Y. Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell. 2009;34:485–96. doi:10.1016/j.molcel.2009.04.022.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Microbiology and Cell ScienceUniversity of FloridaGainesvilleUSA