Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

G Protein α i/o/z

  • Joe B. BlumerEmail author
  • Gregory G. Tall
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_648


Historical Background: Discovery of G Protein α i as the Inhibitor of Hormone-Stimulated Adenylyl Cyclase Activity

During the discovery purification that identified G protein (alpha) s (Gαs) as the  adenylyl cyclase activator, Gilman and colleagues noted a 41 kDa contaminating protein (now known as G protein alpha i (Gαi)) that persisted into the final stages of the Gsαβγ heterotrimer purification. Hormonal activation and inhibition of  adenylyl cyclasewere known at the time to be GTP-dependent....
This is a preview of subscription content, log in to check access.


  1. Adhikari A, Sprang SR. Thermodynamic characterization of the binding of activator of G protein signaling 3 (AGS3) and peptides derived from AGS3 with G alpha i1. J Biol Chem. 2003;278:51825–32.PubMedCrossRefGoogle Scholar
  2. Afshar K, Willard FS, Colombo K, Johnston CA, McCudden CR, Siderovski DP, Gonczy P. RIC-8 is required for GPR-1/2-dependent ga function during asymmetric division of C. elegans embryos. Cell. 2004;119:219–30.PubMedCrossRefGoogle Scholar
  3. Baculikova M, Fiala R, Jezova D, Macho L, Zorad S. Rats with monosodium glutamate-induced obesity and insulin resistance exhibit low expression of Gαlpha(i2) G-protein. Gen Physiol Biophys. 2008;27:222–6.PubMedGoogle Scholar
  4. Barr FA, Leyte A, Mollner S, Pfeuffer T, Tooze SA, Huttner WB. Trimeric G-proteins of the trans-Golgi network are involved in the formation of constitutive secretory vesicles and immature secretory granules. FEBS Lett. 1991;294:239–43.PubMedCrossRefGoogle Scholar
  5. Beckers CJ, Balch WE. Calcium and GTP: essential components in vesicular trafficking between the endoplasmic reticulum and Golgi apparatus. J Cell Biol. 1989;108:1245–56.PubMedCrossRefGoogle Scholar
  6. Berman DM, Gilman AG. Mammalian RGS proteins: barbarians at the gate. J Biol Chem. 1998;273:1269–72.PubMedCrossRefGoogle Scholar
  7. Bernard ML, Peterson YK, Chung P, Jourdan J, Lanier SM. Selective interaction of AGS3 with G-proteins and the influence of AGS3 on the activation state of G-proteins. J Biol Chem. 2001;276:1585–93.PubMedCrossRefGoogle Scholar
  8. Blackmer T, Larsen EC, Takahashi M, Martin TF, Alford S, Hamm HE. G protein betagamma subunit-mediated presynaptic inhibition: regulation of exocytotic fusion downstream of Ca2+ entry. Science. 2001;292:293–7.CrossRefPubMedGoogle Scholar
  9. Blackmer T, Larsen EC, Bartleson C, Kowalchyk JA, Yoon EJ, Preininger AM, Alford S, Hamm HE, Martin TF. G protein betagamma directly regulates SNARE protein fusion machinery for secretory granule exocytosis. Nat Neurosci. 2005;8:421–5.PubMedCrossRefGoogle Scholar
  10. Blumer JB, Smrcka AV, Lanier SM. Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling. Pharmacol Ther. 2007;113:488–506.PubMedCrossRefGoogle Scholar
  11. Blumer JB, Sadik Oner S, Lanier SM. Group II activators of G-protein signaling and proteins containing a G-protein regulatory motif. Acta Physiol. 2011;204:202–18.CrossRefGoogle Scholar
  12. Casey PJ, Fong HK, Simon MI, Gilman AG. Gz, a guanine nucleotide-binding protein with unique biochemical properties. J Biol Chem. 1990;265:2383–90.PubMedGoogle Scholar
  13. Ch’ng Q, Sieburth D, Kaplan JM. Profiling synaptic proteins identifies regulators of insulin secretion and lifespan. PLoS Genet. 2008;4:e1000283.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chen JF, Guo JH, Moxham CM, Wang HY, Malbon CC. Conditional, tissue-specific expression of Q205L G alpha i2 in vivo mimics insulin action. J Mol Med. 1997;75:283–9.PubMedCrossRefGoogle Scholar
  15. Chen-Goodspeed M, Lukan AN, Dessauer CW. Modeling of G alpha(s) and G alpha(i) regulation of human type V and VI adenylyl cyclase. J Biol Chem. 2005;280:1808–16.PubMedCrossRefGoogle Scholar
  16. Chisari M, Saini DK, Kalyanaraman V, Gautam N. Shuttling of G protein subunits between the plasma membrane and intracellular membranes. J Biol Chem. 2007;282:24092–8.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Clapham DE, Neer EJ. G protein βγ subunits. Annu Rev Pharmacol Toxicol. 1997;37:167–203.CrossRefGoogle Scholar
  18. Coleman D, Berghuis A, Lee E, Linder M, Gilman A, Sprang SR. Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis. Science. 1994;265:1405–12.PubMedCrossRefGoogle Scholar
  19. Couwenbergs C, Spilker AC, Gotta M. Control of embryonic spindle positioning and Ga activity by C. elegans RIC-8. Curr Biol. 2004;14:1871–6.PubMedCrossRefGoogle Scholar
  20. Denker SP, McCaffery JM, Palade GE, Insel PA, Farquhar MG. Differential distribution of alpha subunits and beta gamma subunits of heterotrimeric G proteins on Golgi membranes of the exocrine pancreas. J Cell Biol. 1996;133:1027–40.PubMedCrossRefGoogle Scholar
  21. Dessauer CW, Tesmer JJG, Sprang SR, Gilman AG. Identification of a Gia binding site on type V adenylyl cyclase. J Biol Chem. 1998;273:25831–9.PubMedCrossRefGoogle Scholar
  22. Didsbury JR, Snyderman R. Molecular cloning of a new human G protein evidence for two Gia like protein families. FEBS Lett. 1987;219:259–63.PubMedCrossRefGoogle Scholar
  23. Elliott MR. Coordinating speed and amplitude in G-protein signaling. Curr Biol. 2008;18:R777–83.CrossRefGoogle Scholar
  24. Exton JH. Phosphoinositide phospholipases and G proteins in hormone action. Annu Rev Physiol. 1994;56:349–69.PubMedCrossRefGoogle Scholar
  25. Farr GW, Scharl EC, Schumacher RJ, Sondek S, Horwich AL. Chaperonin-mediated folding in the eukaryotic cytosol proceeds through rounds of release of native and nonnative forms. Cell. 1997;89:927–37.PubMedCrossRefGoogle Scholar
  26. Gabay M, Pinter ME, Wright FA, Chan P, Murphy AJ, Valenzuela DM, Yancopoulos GD, Tall GG. Ric-8 proteins are molecular chaperones that direct nascent G protein a subunit membrane association. Sci Signal. 2011;4:ra79.PubMedCrossRefGoogle Scholar
  27. Garcia-Marcos M, Ear J, Farquhar MG, Ghosh P. A GDI and a GEF regulate autophagy by balancing g protein activity and growth factor signals. Mol Biol Cell. 2011;22:673–86.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Gawler D, Milligan G, Spiegel AM, Unson CG, Houslay MD. Abolition of the expression of inhibitory guanine nucleotide regulatory protein Gi activity in diabetes. Nature. 1987;327:229–32.PubMedCrossRefGoogle Scholar
  29. Gerachshenko T, Blackmer T, Yoon EJ, Bartleson C, Hamm HE, Alford S. Gbetagamma acts at the C terminus of SNAP-25 to mediate presynaptic inhibition. Nat Neurosci. 2005;8:597–605.CrossRefPubMedGoogle Scholar
  30. Gilman AG. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–49.PubMedCrossRefGoogle Scholar
  31. Gilman A. G proteins and regulation of adenylyl cyclase. Biosci Rep. 1995;15:65–97.PubMedCrossRefGoogle Scholar
  32. Gohla A, Klement K, Piekorz RP, Pexa K, von Dahl S, Spicher K, Dreval V, Haussinger D, Birnbaumer L, Nurnberg B. An obligatory requirement for the heterotrimeric G protein Gi3 in the antiautophagic action of insulin in the liver. Proc Natl Acad Sci USA. 2007;104:3003–8.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gonczy P. Mechanisms of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol. 2008;9:355–66.PubMedCrossRefGoogle Scholar
  34. Gotta M, Ahringer J. Distinct roles for Galpha and Gbetagamma in regulating spindle position and orientation in caenorhabditis elegans embryos. Nat Cell Biol. 2001;3:297–300.PubMedCrossRefGoogle Scholar
  35. Gulbenkian A, Schobert L, Nixon C, Tabachnick II A. Metabolic effects of pertussis sensitization in mice and rats. Endocrinology. 1968;83:885–92.PubMedCrossRefGoogle Scholar
  36. Gutkind JS. Regulation of mitogen-activated protein kinase signaling networks by G protein-coupled receptors. Sci STKE. 2000;2000:re1.PubMedCrossRefGoogle Scholar
  37. Hajdu-Cronin YM, Chen WJ, Patikoglou G, Koelle MR, Sternberg PW. Antagonism between G(o)alpha and G(q)alpha in Caenorhabditis elegans: the RGS protein EAT-16 is necessary for G(o)alpha signaling and regulates G(q)alpha activity. Genes Dev. 1999;13:1780–93.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hausdorff WP, Pitcher JA, Luttrell DK, Linder ME, Kurose H, Parsons SJ, Caron MG, Lefkowitz RJ. Tyrosine phosphorylation of G protein alpha subunits by pp 60c-src. Proc Natl Acad Sci. 1992;89:5720–4.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hess HA, Roper J-C, Grill SW, Koelle MR. RGS-7 completes a receptor-independent heterotrimeric G protein cycle to asymmetrically regulate mitotic spindle positioning in C. elegans. Cell. 2004;119:209–18.PubMedCrossRefGoogle Scholar
  40. Hollinger S, Hepler JR. Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev. 2002;54:527–59.PubMedCrossRefGoogle Scholar
  41. Huang X, Charbeneau RA, Fu Y, Kaur K, Gerin I, MacDougald OA, Neubig RR. Resistance to diet-induced obesity and improved insulin sensitivity in mice with a regulator of G protein signaling-insensitive G184S Gnai2 allele. Diabetes. 2008;57:77–85.PubMedCrossRefGoogle Scholar
  42. Jamora C, Takizawa PA, Zaarour RF, Denesvre C, Faulkner DJ, Malhotra V. Regulation of Golgi structure through heterotrimeric G proteins. Cell. 1997;91:617–26.PubMedCrossRefGoogle Scholar
  43. Jamora C, Yamanouye N, Van Lint J, Laudenslager J, Vandenheede JR, Faulkner DJ, Malhotra V. Gbetagamma-mediated regulation of Golgi organization is through the direct activation of protein kinase D. Cell. 1999;98:59–68.PubMedCrossRefGoogle Scholar
  44. Jones DT, Reed RR. Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J Biol Chem. 1987;262:14241–9.PubMedGoogle Scholar
  45. Katada T, Ui M. Islet-activating protein. Enhanced insulin secretion and cyclic AMP accumulation in pancreatic islets due to activation of native calcium ionophores. J Biol Chem. 1979;254:469–79.PubMedGoogle Scholar
  46. Katada T, Ui M. Islet-activating protein. A modifier of receptor-mediated regulation of rat islet adenylate cyclase. J Biol Chem. 1981a;256:8310–7.PubMedGoogle Scholar
  47. Katada T, Ui M. In vitro effects of islet-activating protein on cultured rat pancreatic islets. Enhancement of insulin secretion, adenosine 3′:5′-monophosphate accumulation and 45Ca flux. J Biochem. 1981b;89:979–90.PubMedGoogle Scholar
  48. Kimple RJ, Kimple ME, Betts L, Sondek J, Siderovski DP. Structural determinants for GoLoco-induced inhibition of nucleotide release by Galpha subunits. Nature. 2002;416:878–81.PubMedCrossRefGoogle Scholar
  49. Kimple RJ, Willard FS, Hains MD, Jones MB, Nweke GK, Siderovski DP. Guanine nucleotide dissociation inhibitor activity of the triple GoLoco motif protein G18: alanine-to-aspartate mutation restores function to an inactive second GoLoco motif. Biochem J. 2004;378:801–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kimple ME, Nixon AB, Kelly P, Bailey CL, Young KH, Fields TA, Casey PJ. A role for G(z) in pancreatic islet beta-cell biology. J Biol Chem. 2005;280:31708–13.PubMedCrossRefGoogle Scholar
  51. Kimple ME, Joseph JW, Bailey CL, Fueger PT, Hendry IA, Newgard CB, Casey PJ. Galphaz negatively regulates insulin secretion and glucose clearance. J Biol Chem. 2008;283:4560–7.PubMedCrossRefGoogle Scholar
  52. Kinoshita-Kawada M, Oberdick J, Xi ZM. A Purkinje cell specific GoLoco domain protein, L7/Pcp-2, modulates receptor-mediated inhibition of Cav2.1 Ca2+ channels in a dose-dependent manner. Brain Res Mol Brain Res. 2004;132:73–86.PubMedCrossRefGoogle Scholar
  53. Knoblich JA. Asymmetric cell division: recent developments and their implications for tumour biology. Nat Rev Mol Cell Biol. 2010;11:849–60.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kreuzer J, Nurnberg B, Krieger-Brauer HI. Ligand-dependent autophosphorylation of the insulin receptor is positively regulated by Gi-proteins. Biochem J. 2004;380:831–6.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kumar P, Wu Q, Chambliss KL, Yuhanna IS, Mumby SM, Mineo C, Tall GG, Shaul PW. Direct interactions with Gai and Gβγ mediate nongenomic signaling by estrogen receptor a. Mol Endocrinol. 2007;21:1370–80.PubMedCrossRefGoogle Scholar
  56. Lackner MR, Nurrish SJ, Kaplan JM. Facilitation of synaptic transmission by EGL-30 Gqa and EGL-8 PLC[beta]: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron. 1999;24:335–46.PubMedCrossRefGoogle Scholar
  57. Lambright DG, Sondek J, Bohm A, Skiba NP, Hamm HE, Sigler PB. The 2.0 A crystal structure of a heterotrimeric G protein. Nature. 1996;379:311–9.PubMedCrossRefGoogle Scholar
  58. Lin HC, Duncan JA, Kozasa T, Gilman AG. Sequestration of the G protein beta gamma subunit complex inhibits receptor-mediated endocytosis. Proc Natl Acad Sci USA. 1998;95:5057–60.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Ma Y-C, Huang J, Ali S, Lowry W, Huang X-Y. Src tyrosine kinase is a novel direct effector of G proteins. Cell. 2000;102:635–46.PubMedCrossRefGoogle Scholar
  60. Maier O, Ehmsen E, Westermann P. Trimeric G protein alpha subunits of the Gs and Gi families localized at the Golgi membrane. Biochem Biophys Res Commun. 1995;208:135–43.PubMedCrossRefGoogle Scholar
  61. Marrari Y, Crouthamel M, Irannejad R, Wedegaertner PB. Assembly and trafficking of heterotrimeric G proteins. Biochemistry. 2007;46:7665–77.PubMedPubMedCentralCrossRefGoogle Scholar
  62. McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS. G-protein signaling: back to the future. Cell Mol Life Sci. 2005;62:551–77.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Miller KG, Emerson MD, Rand JB. Goalpha and diacylglycerol kinase negatively regulate the Gqalpha pathway in C. elegans. Neuron. 1999;24:323–33.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Mixon MB, Lee E, Coleman DE, Berghuis AM, Gilman AG, Sprang SR. Tertiary and quaternary structural changes in Gia1 induced by GTP hydrolysis. Science. 1995;270:954–60.PubMedCrossRefGoogle Scholar
  65. Montmayeur JP, Borrelli E. Targeting of G alpha i2 to the Golgi by alternative spliced carboxyl-terminal region. Science. 1994;263:95–8.PubMedCrossRefGoogle Scholar
  66. Moxham CM, Malbon CC. Insulin action impaired by deficiency of the G-protein subunit G ialpha2. Nature. 1996;379:840–4.PubMedCrossRefGoogle Scholar
  67. Muller L, Picart R, Barret A, Bockaert J, Homburger V, Tougard C. Identification of multiple subunits of heterotrimeric G proteins on the membrane of secretory granules in rat prolactin anterior pituitary cells. Mol Cell Neurosci. 1994;5:556–66.PubMedCrossRefGoogle Scholar
  68. Mumby SM, Heukeroth RO, Gordon JI, Gilman AG. G-protein a-subunit expression, myristoylation, and membrane association in COS cells. Proc Natl Acad Sci. 1990;87:728–32.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Nadella R, Blumer JB, Jia G, Kwon M, Akbulut T, Qian F, Sedlic F, Wakatsuki T, Sweeney Jr WE, Wilson PD, et al. Activator of G protein signaling 3 promotes epithelial cell proliferation in PKD. J Am Soc Nephrol. 2010;21:1275–80.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Nagahama M, Usui S, Shinohara T, Yamaguchi T, Tani K, Tagaya M. Inactivation of Galpha(z) causes disassembly of the Golgi apparatus. J Cell Sci. 2002;115:4483–93.PubMedCrossRefGoogle Scholar
  71. Natarajan K, Berk BC. Crosstalk coregulation mechanisms of G protein-coupled receptors and receptor tyrosine kinases. Methods Mol Biol. 2006;332:51–77.PubMedGoogle Scholar
  72. Nathan D. Signalling via the G protein-activated K+ channels. Cell Signal. 1997;9:551–73.CrossRefGoogle Scholar
  73. Neer EJ, Lok JM, Wolf LG. Purification and properties of the inhibitory guanine nucleotide regulatory unit of brain adenylate cyclase. J Biol Chem. 1984;259:14222–9.PubMedGoogle Scholar
  74. Ogier-Denis E, Couvineau A, Maoret JJ, Houri JJ, Bauvy C, De Stefanis D, Isidoro C, Laburthe M, Codogno P. A heterotrimeric Gi3-protein controls autophagic sequestration in the human colon cancer cell line HT-29. J Biol Chem. 1995;270:13–6.PubMedCrossRefGoogle Scholar
  75. Oner SS, An N, Vural A, Breton B, Bouvier M, Blumer JB, Lanier SM. Regulation of the AGS3.G{alpha}i signaling complex by a seven-transmembrane span receptor. J Biol Chem. 2010a;285:33949–58.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Oner SS, Maher EM, Breton B, Bouvier M, Blumer JB. Receptor-regulated interaction of activator of G-protein signaling-4 and Galphai. J Biol Chem. 2010b;285:20588–94.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Parmentier ML, Woods D, Greig S, Phan PG, Radovic A, Bryant P, O’Kane CJ. Rapsynoid/partner of inscuteable controls asymmetric division of larval neuroblasts in Drosophila. J Neurosci. 2000;20:RC84.PubMedCrossRefGoogle Scholar
  78. Patel TB. Single transmembrane spanning heterotrimeric G protein-coupled receptors and their signaling cascades. Pharmacol Rev. 2004;56:371–85.PubMedCrossRefGoogle Scholar
  79. Pimplikar SW, Simons K. Regulation of apical transport in epithelial cells by a Gs class of heterotrimeric G protein. Nature. 1993;362:456–8.PubMedCrossRefGoogle Scholar
  80. Regard JB, Kataoka H, Cano DA, Camerer E, Yin L, Zheng YW, Scanlan TS, Hebrok M, Coughlin SR. Probing cell type-specific functions of Gi in vivo identifies GPCR regulators of insulin secretion. J Clin Invest. 2007;117:4034–43.PubMedPubMedCentralGoogle Scholar
  81. Regner KR, Nozu K, Lanier SM, Blumer JB, Avner ED, Sweeney Jr WE, Park F. Loss of activator of G-protein signaling 3 impairs renal tubular regeneration following acute kidney injury in rodents. FASEB J. 2011;25:1844–55.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Ross EM, Wilkie TM. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem. 2000;69:795–827.PubMedCrossRefGoogle Scholar
  83. Sadana R, Dessauer CW. Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals. 2009;17:5–22.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Saini DK, Chisari M, Gautam N. Shuttling and translocation of heterotrimeric G proteins and Ras. Trends Pharmacol Sci. 2009;30:278–86.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Sanada K, Tsai LH. G protein betagamma subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell. 2005;122:119–31.PubMedCrossRefGoogle Scholar
  86. Sato M, Blumer JB, Simon V, Lanier SM. Accessory proteins for G proteins: partners in signaling. Annu Rev Pharmacol Toxicol. 2006;46:151–87.PubMedCrossRefGoogle Scholar
  87. Schaefer M, Shevchenko A, Knoblich JA. A protein complex containing inscuteable and the galpha-binding protein pins orients asymmetric cell divisions in Drosophila. Curr Biol. 2000;10:353–62.PubMedCrossRefGoogle Scholar
  88. Schurmann A, Rosenthal W, Schultz G, Joost HG. Characterization of GTP-binding proteins in Golgi-associated membrane vesicles from rat adipocytes. Biochem J. 1992;283(Pt 3):795–801.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Schwaninger R, Plutner H, Bokoch GM, Balch WE. Multiple GTP-binding proteins regulate vesicular transport from the ER to Golgi membranes. J Cell Biol. 1992;119:1077–96.PubMedCrossRefGoogle Scholar
  90. Sharp GW. Mechanisms of inhibition of insulin release. Am J Phys. 1996;271:C1781–99.CrossRefGoogle Scholar
  91. Siderovski DP, Willard FS. The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int J Biol Sci. 2005;1:51–66.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Smrcka A. G protein βγ subunits: central mediators of G protein-coupled receptor signaling. Cell Mol Life Sci. 2008;65:2191–214.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Sprang SR. G protein mechanisms: insights from structural analysis. Annu Rev Biochem. 1997;66:639–78.PubMedCrossRefGoogle Scholar
  94. Stephens L, Smrcka A, Cooke FT, Jackson TR, Sternweis PC, Hawkins PT. A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein βγ subunits. Cell. 1994;77:83–93.PubMedCrossRefGoogle Scholar
  95. Sternweis PC, Robishaw JD. Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J Biol Chem. 1984;259:13806–13.PubMedGoogle Scholar
  96. Stow JL, de Almeida JB. Distribution and role of heterotrimeric G proteins in the secretory pathway of polarized epithelial cells. J Cell Sci Suppl. 1993;17:33–9.PubMedCrossRefGoogle Scholar
  97. Stow JL, de Almeida JB, Narula N, Holtzman EJ, Ercolani L, Ausiello DA. A heterotrimeric G protein, G alpha i-3, on Golgi membranes regulates the secretion of a heparan sulfate proteoglycan in LLC-PK1 epithelial cells. J Cell Biol. 1991;114:1113–24.PubMedCrossRefGoogle Scholar
  98. Suki WN, Abramowitz J, Mattera R, Codina J, Birnbaumer L. The human genome encodes at least three non-allellic G proteins with ai-type subunits. FEBS Lett. 1987;220:187–92.PubMedCrossRefGoogle Scholar
  99. Sunahara R, Dessauer C, Gilman AG. Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol. 1996;36:461–80.PubMedCrossRefGoogle Scholar
  100. Szentivanyi A, Fishel CW, Talmage DW. Adrenaline mediation of histamine and serotonin hyperglycemia in normal mice and the absence of adrenaline-induced hyperglycemia in pertussis-sensitized mice. J Infect Dis. 1963;113:86–98.PubMedCrossRefGoogle Scholar
  101. Tabachnick II, Gulbenkian A. Adrenergic changes due to pertussis: insulin, glucose and free fatty acids. Eur J Pharmacol. 1969;7:186–95.PubMedCrossRefGoogle Scholar
  102. Tall GG, Gilman AG. Resistance to inhibitors of cholinesterase 8A catalyzes release of Galphai-GTP and nuclear mitotic apparatus protein (NuMA) from NuMA/LGN/Galphai-GDP complexes. Proc Natl Acad Sci USA. 2005;102:16584–9.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Taussig R, Gilman AG. Mammalian membrane-bound adenylyl cyclases. J Biol Chem. 1995;270:1–4.PubMedCrossRefGoogle Scholar
  104. Taussig R, Tang WJ, Hepler JR, Gilman AG. Distinct patterns of bidirectional regulation of mammalian adenylyl cyclases. J Biol Chem. 1994;269:6093–100.PubMedGoogle Scholar
  105. Tedford HW, Zamponi GW. Direct G protein modulation of Cav2 calcium channels. Pharmacol Rev. 2006;58:837–62.PubMedCrossRefGoogle Scholar
  106. Tesmer JJG, Berman DM, Gilman AG, Sprang SR. Structure of RGS4 bound to AlF4 - -activated Gia1: stabilization of the transition state for GTP hydrolysis. Cell. 1997;89:251–61.PubMedCrossRefGoogle Scholar
  107. Thomas CJ, Tall GG, Adhikari A, Sprang SR. Ric-8A catalyzes guanine nucleotide exchange on G alphai1 bound to the GPR/GoLoco exchange inhibitor AGS3. J Biol Chem. 2008;283:23150–60.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Vashlishan AB, Madison JM, Dybbs M, Bai J, Sieburth D, Ch’ng Q, Tavazoie M, Kaplan JM. An RNAi screen identifies genes that regulate GABA synapses. Neuron. 2008;58:346–61.PubMedCrossRefGoogle Scholar
  109. Vellano CP, Maher EM, Hepler JR, Blumer JB. G protein-coupled receptors and resistance to inhibitors of cholinesterase-8A (Ric-8A) both regulate the regulator of G protein signaling 14(RGS14):G{alpha}i1 complex in live cells. J Biol Chem. 2011a;286:38659–69.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Vellano CP, Shu FJ, Ramineni S, Yates CK, Tall GG, Hepler JR. Activation of the regulator of G protein signaling 14-Galphai1-GDP signaling complex is regulated by resistance to inhibitors of cholinesterase-8A. Biochemistry. 2011b;50:752–62.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Wall MA, Coleman DE, Lee E, Iñiguez-Lluhi JA, Posner BA, Gilman AG, Sprang SR. The structure of the G protein heterotrimer Gia1β1γ2. Cell. 1995;83:1047–58.PubMedCrossRefGoogle Scholar
  112. Wang Z, Thurmond DC. Mechanisms of biphasic insulin-granule exocytosis – roles of the cytoskeleton, small GTPases and SNARE proteins. J Cell Sci. 2009;122:893–903.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Wang Y, Park S, Bajpayee NS, Nagaoka Y, Boulay G, Birnbaumer L, Jiang M. Augmented glucose-induced insulin release in mice lacking G(o2), but not G(o1) or G(i) proteins. Proc Natl Acad Sci USA. 2011;108:1693–8.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Webb CK, McCudden CR, Willard FS, Kimple RJ, Siderovski DP, Oxford GS. D2 dopamine receptor activation of potassium channels is selectively decoupled by Galpha-specific GoLoco motif peptides. J Neurochem. 2005;92:1408–18.PubMedCrossRefGoogle Scholar
  115. Wilkie TM, Kinch L. New roles for G alpha and RGS proteins: communication continues despite pulling sisters apart. Curr Biol. 2005;15:R843–954.PubMedCrossRefGoogle Scholar
  116. Wilson BS, Palade GE, Farquhar MG. Endoplasmic reticulum-through-Golgi transport assay based on O-glycosylation of native glycophorin in permeabilized erythroleukemia cells: role for Gi3. Proc Natl Acad Sci USA. 1993;90:1681–5.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wilson BS, Komuro M, Farquhar MG. Cellular variations in heterotrimeric G protein localization and expression in rat pituitary. Endocrinology. 1994;134:233–44.PubMedCrossRefGoogle Scholar
  118. Wiser O, Qian X, Ehlers M, Ja WW, Roberts RW, Reuveny E, Jan YN, Jan LY. Modulation of basal and receptor-induced GIRK potassium channel activity and neuronal excitability by the mammalian PINS homolog LGN. Neuron. 2006;50:561–73.PubMedCrossRefGoogle Scholar
  119. Yajima M, Hosoda K, Kanbayashi Y, Nakamura T, Takahashi I, Ui M. Biological properties of islets-activating protein (IAP) purified from the culture medium of Bordetella pertussis. J Biochem. 1978;83:305–12.PubMedCrossRefGoogle Scholar
  120. Yamaguchi T, Nagahama M, Itoh H, Hatsuzawa K, Tani K, Tagaya M. Regulation of the golgi structure by the alpha subunits of heterotrimeric G proteins. FEBS Lett. 2000;470:25–8.PubMedCrossRefGoogle Scholar
  121. Yu F, Morin X, Cai Y, Yang X, Chia W. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell. 2000;100:399–409.PubMedCrossRefGoogle Scholar
  122. Zhao A, Ohara-Imaizumi M, Brissova M, Benninger RK, Xu Y, Hao Y, Abramowitz J, Boulay G, Powers AC, Piston D, et al. Galphao represses insulin secretion by reducing vesicular docking in pancreatic beta-cells. Diabetes. 2010a;59:2522–9.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Zhao Y, Fang Q, Straub SG, Lindau M, Sharp GW. Noradrenaline inhibits exocytosis via the G protein betagamma subunit and refilling of the readily releasable granule pool via the alpha(i1/2) subunit. J Physiol. 2010b;588:3485–98.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonUSA
  2. 2.Department of NeurosciencesMedical University of South CarolinaCharlestonUSA
  3. 3.Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterUSA