Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Flotillin-1 (FLOT1)

  • Rainer ProhaskaEmail author
  • Ulrich Salzer
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_645


Historical Background

Flotillin-1 was originally identified in 1997, when Bickel et al. analyzed caveolin-rich membrane fractions from mouse lung and isolated a 45 kDa protein that was microsequenced. Degenerate primers were designed from the peptide sequences and used for PCR of mouse lung cDNA. The PCR-product was then used as a probe for screening of a 3T3-L1 adipocyte cDNA library. The characterized sequence showed similarity to the ESA protein. An antipeptide antibody identified a 47 kDa protein on Western blots. Because this protein was detected in floating, caveolin-rich, Triton X-100-insoluble membrane fractions, it was termed “flotillin-1.” The similar ESA protein (47% identity) was renamed as “flotillin-2.” Also in 1997, Schulte et al. identified and characterized two proteins that were induced in regenerating fish retinal ganglion cell axons after injury and thus were named “reggie-1” and “reggie-2.” In 1998, Lang et al. cloned the rat reggie...

This is a preview of subscription content, log in to check access.


  1. Amaddii M, Meister M, Banning A, Tomasovic A, Mooz J, Rajalingam K, Tikkanen R. Flotillin-1/reggie-2 protein plays dual role in activation of receptor-tyrosine kinase/mitogen-activated protein kinase signaling. J Biol Chem. 2012;287:7265–78.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Babuke T, Tikkanen R. Dissecting the molecular function of reggie/flotillin proteins. Eur J Cell Biol. 2007;86:525–32.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Babuke T, Ruonala M, Meister M, Amaddii M, Genzler C, Esposito A, Tikkanen R. Hetero-oligomerization of reggie-1/flotillin-2 and reggie-2/flotillin-1 is required for their endocytosis. Cell Signal. 2009;21:1287–97.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Banning A, Kurrle N, Meister M, Tikkanen R. Flotillins in receptor tyrosine kinase signaling and cancer. Cells. 2014;3:129–49.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Baumann CA, Ribon V, Kanzaki M, Thurmond DC, Mora S, Shigematsu S, Bickel PE, Pessin JE, Saltiel AR. CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature. 2000;407:202–7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baumann T, Affentranger S, Niggli V. Evidence for chemokine-mediated coalescence of preformed flotillin hetero-oligomers in human T-cells. J Biol Chem. 2012;287:39664–72.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bodin S, Planchon D, Rios Morris E, Comunale F, Gauthier-Rouviere C. Flotillins in intercellular adhesion - from cellular physiology to human diseases. J Cell Sci. 2014;127:5139–47.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cremona ML, Matthies HJ, Pau K, Bowton E, Speed N, Lute BJ, Anderson M, Sen N, Robertson SD, Vaughan RA, Rothman JE, Galli A, Javitch JA, Yamamoto A. Flotillin-1 is essential for PKC-triggered endocytosis and membrane microdomain localization of DAT. Nat Neurosci. 2011;14:469–77.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Frick M, Bright NA, Riento K, Bray A, Merrified C, Nichols BJ. Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr Biol. 2007;17:1151–6.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Ge L, Qi W, Wang LJ, Miao HH, Qu YX, Li BL, Song BL. Flotillins play an essential role in Niemann-Pick C1-like 1-mediated cholesterol uptake. Proc Natl Acad Sci USA. 2011;108:551–6.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Guillaume E, Comunale F, Do Khoa N, Planchon D, Bodin S, Gauthier-Rouviere C. Flotillin microdomains stabilize cadherins at cell-cell junctions. J Cell Sci. 2013;126:5293–304.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Jang D, Kwon H, Jeong K, Lee J, Pak Y. Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor. J Cell Sci. 2015;128:2179–90.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Ji YJ, Hwang YS, Mood K, Cho HJ, Lee HS, Winterbottom E, Cousin H, Daar IO. EphrinB2 affects apical constriction in Xenopus embryos and is regulated by ADAM10 and flotillin-1. Nat Commun. 2014;5:3516.PubMedPubMedCentralCrossRefGoogle Scholar
  14. John BA, Meister M, Banning A, Tikkanen R. Flotillins bind to the dileucine sorting motif of beta-site amyloid precursor protein-cleaving enzyme 1 and influence its endosomal sorting. FEBS J. 2014;281:2074–87.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Kurrle N, Völlner F, Eming R, Hertl M, Banning A, Tikkanen R. Flotillins directly interact with gamma-catenin and regulate epithelial cell-cell adhesion. PLoS One. 2013;8:e84393.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Langhorst MF, Reuter A, Stuermer CA. Scaffolding microdomains and beyond: the function of reggie/flotillin proteins. Cell Mol Life Sci. 2005;62:2228–40.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Liu J, Deyoung SM, Zhang M, Dold LH, Saltiel AR. The stomatin/prohibitin/flotillin/HflK/C domain of flotillin-1 contains distinct sequences that direct plasma membrane localization and protein interactions in 3T3-L1 adipocytes. J Biol Chem. 2005;280:16125–34.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Liu R, Yang G, Zhou MH, He Y, Mei YA, Ding Y. Flotillin-1 downregulates K(+) current by directly coupling with Kv2.1 subunit. Protein Cell. 2016;7:455–60.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Ludwig A, Otto GP, Riento K, Hams E, Fallon PG, Nichols BJ. Flotillin microdomains interact with the cortical cytoskeleton to control uropod formation and neutrophil recruitment. J Cell Biol. 2010;191:771–81.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Meister M, Tikkanen R. Endocytic trafficking of membrane-bound cargo: a flotillin point of view. Membranes. 2014;4:356–71.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Monje FJ, Divisch I, Demit M, Lubec G, Pollak DD. Flotillin-1 is an evolutionary-conserved memory-related protein up-regulated in implicit and explicit learning paradigms. Ann Med. 2013;45:301–7.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Morrow IC, Parton RG. Flotillins and the PHB domain protein family: rafts, worms and anaesthetics. Traffic. 2005;6:725–40.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Morrow IC, Rea S, Martin S, Prior IA, Prohaska R, Hancock JF, James DE, Parton RG. Flotillin-1/reggie-2 traffics to surface raft domains via a novel golgi-independent pathway. Identification of a novel membrane targeting domain and a role for palmitoylation. J Biol Chem. 2002;277:48834–41.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Ogura M, Yamaki J, Homma MK, Homma Y. Phosphorylation of flotillin-1 by mitochondrial c-Src is required to prevent the production of reactive oxygen species. FEBS Lett. 2014;588:2837–43.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Otto GP, Nichols BJ. The roles of flotillin microdomains-endocytosis and beyond. J Cell Sci. 2011;124:3933–40.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Rajendran L, Masilamani M, Solomon S, Tikkanen R, Stuermer CA, Plattner H, Illges H. Asymmetric localization of flotillins/reggies in preassembled platforms confers inherent polarity to hematopoietic cells. Proc Natl Acad Sci USA. 2003;100:8241–6.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Riento K, Frick M, Schafer I, Nichols BJ. Endocytosis of flotillin-1 and flotillin-2 is regulated by Fyn kinase. J Cell Sci. 2009;122:912–8.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Rivera-Milla E, Stuermer CA, Málaga-Trillo E. Ancient origin of reggie (flotillin), reggie-like, and other lipid-raft proteins: convergent evolution of the SPFH domain. Cell Mol Life Sci. 2006;63:343–57.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Rossy J, Schlicht D, Engelhardt B, Niggli V. Flotillins interact with PSGL-1 in neutrophils and, upon stimulation, rapidly organize into membrane domains subsequently accumulating in the uropod. PLoS One. 2009;4:e5403.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Salzer U, Prohaska R. Flotillin 2. UCSD nature molecule pages. 2011.  https://doi.org/10.1038/mp.a002226.01.CrossRefGoogle Scholar
  31. Solis GP, Hoegg M, Munderloh C, Schrock Y, Malaga-Trillo E, Rivera-Milla E, Stuermer CA. Reggie/flotillin proteins are organized into stable tetramers in membrane microdomains. Biochem J. 2007;403:313–22.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Solis GP, Hülsbusch N, Radon Y, Katanaev VL, Plattner H, Stuermer CA. Reggies/flotillins interact with Rab11a and SNX4 at the tubulovesicular recycling compartment and function in transferrin receptor and E-cadherin trafficking. Mol BiolCell. 2013;24:2689–702.Google Scholar
  33. Sorkina T, Caltagarone J, Sorkin A. Flotillins regulate membrane mobility of the dopamine transporter but are not required for its protein kinase C dependent endocytosis. Traffic. 2013;14:709–24.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Stuermer CA. The reggie/flotillin connection to growth. Trends Cell Biol. 2010;20:6–13.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Sugawara Y, Nishii H, Takahashi T, Yamauchi J, Mizuno N, Tago K, Itoh H. The lipid raft proteins flotillins/reggies interact with Galphaq and are involved in Gq-mediated p38 mitogen-activated protein kinase activation through tyrosine kinase. Cell Signal. 2007;19:1301–8.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Swanwick CC, Shapiro ME, Yi Z, Chang K, Wenthold RJ. NMDA receptors interact with flotillin-1 and −2, lipid raft-associated proteins. FEBS Lett. 2009;583:1226–30.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Tomasovic A, Traub S, Tikkanen R. Molecular networks in FGF signaling: flotillin-1 and cbl-associated protein compete for the binding to fibroblast growth factor receptor substrate 2. PLoS One. 2012;7:e29739.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Vollner F, Ali J, Kurrle N, Exner Y, Eming R, Hertl M, Banning A, Tikkanen R. Loss of flotillin expression results in weakened desmosomal adhesion and Pemphigus vulgaris-like localisation of desmoglein-3 in human keratinocytes. Sci Rep. 2016;6:28820.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Max F. Perutz Laboratories (MFPL)Medical University of ViennaViennaAustria