Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Delta Glutamate Receptor (GluD1, GluD2)

  • Kazuhisa KohdaEmail author
  • Wataru Kakegawa
  • Michisuke Yuzaki
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_642


 GluD1;  GluD2;  GluRδ1;  GluRδ2

Historical Background

The δ1 glutamate receptor (GluRδ1 and GluD1) and the δ2 glutamate receptor (GluRδ2 and GluD2) were cloned by homology screening in 1993 at the end of the “gold rush” for cloning of ionotropic glutamate receptor (iGluR) cDNA. They were regarded as orphan receptors for a long time since their endogenous ligands were unknown. GluD1 is highly expressed in hair cells of the auditory and vestibular systems in adult mice. Indeed, deletion of a gene encoding GluD1 (grid1) in mice leads to deficit in high-frequency hearing. In contrast, GluD2 is predominantly expressed in cerebellar Purkinje cells and deletion of a gene encoding GluD2 (grid2) results in cerebellar ataxia and characteristic phenotypes at parallel fiber (PF)–Purkinje cell synapses. Functionally, the long-term depression (LTD) of synaptic transmission, which is thought to underlie motor coordination and motor learning, is completely blunted. Morphologically,...

This is a preview of subscription content, log in to check access.


  1. Ady V, Perroy J, Tricoire L, Piochon C, Dadak S, Chen X, et al. Type 1 metabotropic glutamate receptor (mGlu1) trigger the gating of GluD2 delta glutamate receptors. EMBO Rep. 2014;15:103–9.CrossRefPubMedGoogle Scholar
  2. Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80:807–15.CrossRefPubMedGoogle Scholar
  3. Coutelier M, Burglen L, Mundwiller E, Abada-Bendib M, Rodriguez D, Chantot-Bastaraud S, et al. GRID2 mutations span from congenital to mild adult-onset cerebellar ataxia. Neurology. 2015;84:1751–9.CrossRefPubMedGoogle Scholar
  4. Elegheert J, Kakegawa W, Clay JE, Shanks NF, Behiels E, Matsuda K, et al. Structural basis for integration of GluD receptors within synaptic organizer complexes. Science. 2016;353:295–9.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Fallin MD, Lasseter VK, Avramopoulos D, Nicodemus KK, Wolyniec PS, McGrath JA, et al. Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am J Hum Genet. 2005;77:918–36.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature. 2009;459:569–73.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Guo SZ, Huang K, Shi YY, Tang W, Zhou J, Feng GY, et al. A case-control association study between the GRID1 gene and schizophrenia in the Chinese Northern Han population. Schizophr Res. 2007;93:385–90.CrossRefPubMedGoogle Scholar
  8. Hepp R, Hay YA, Aguado C, Lujan R, Dauphinot L, Potier MC, et al. Glutamate receptors of the delta family are widely expressed in the adult brain. Brain Struct Funct. 2015;220:2797–815.CrossRefPubMedGoogle Scholar
  9. Hills LB, Masri A, Konno K, Kakegawa W, Lam AT, Lim-Melia E, et al. Deletions in GRID2 lead to a recessive syndrome of cerebellar ataxia and tonic upgaze in humans. Neurology. 2013;81:1378–86.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Hirai H, Miyazaki T, Kakegawa W, Matsuda S, Mishina M, Watanabe M, et al. Rescue of abnormal phenotypes of the delta2 glutamate receptor-null mice by mutant delta2 transgenes. EMBO Rep. 2005;6:90–5.CrossRefPubMedGoogle Scholar
  11. Kakegawa W, Miyazaki T, Hirai H, Motohashi J, Mishina M, Watanabe M, et al. Ca2+ permeability of the channel pore is not essential for the delta2 glutamate receptor to regulate synaptic plasticity and motor coordination. J Physiol. 2007a;579:729–35.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Kakegawa W, Kohda K, Yuzaki M. The delta2 ‘ionotropic’ glutamate receptor functions as a non-ionotropic receptor to control cerebellar synaptic plasticity. J Physiol. 2007b;584:89–96.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Kakegawa W, Miyazaki T, Emi K, Matsuda K, Kohda K, Motohashi J, et al. Differential regulation of synaptic plasticity and cerebellar motor learning by the C-terminal PDZ-binding motif of GluRdelta2. J Neurosci. 2008;28:1460–8.CrossRefPubMedGoogle Scholar
  14. Kakegawa W, Miyazaki T, Kohda K, Matsuda K, Emi K, Motohashi J, et al. The N-terminal domain of GluD2 (GluRdelta2) recruits presynaptic terminals and regulates synaptogenesis in the cerebellum in vivo. J Neurosci. 2009;29:5738–48.CrossRefPubMedGoogle Scholar
  15. Kakegawa W, Miyoshi Y, Hamase K, Matsuda S, Matsuda K, Kohda K, et al. D-serine regulates cerebellar LTD and motor coordination through the delta2 glutamate receptor. Nat Neurosci. 2011;14:603–11.CrossRefPubMedGoogle Scholar
  16. Kina S, Tezuka T, Kusakawa S, Kishimoto Y, Kakizawa S, Hashimoto K, et al. Involvement of protein-tyrosine phosphatase PTPMEG in motor learning and cerebellar long-term depression. Eur J Neurosci. 2007;26:2269–78.CrossRefPubMedGoogle Scholar
  17. Kohda K, Wang Y, Yuzaki M. Mutation of a glutamate receptor motif reveals its role in gating and delta2 receptor channel properties. Nat Neurosci. 2000;3:315–22.CrossRefPubMedGoogle Scholar
  18. Kohda K, Kakegawa W, Matsuda S, Nakagami R, Kakiya N, Yuzaki M. The extreme C-terminus of GluRdelta2 is essential for induction of long-term depression in cerebellar slices. Eur J Neurosci. 2007;25:1357–62.CrossRefPubMedGoogle Scholar
  19. Kohda K, Kakegawa W, Matsuda S, Yamamoto T, Hirano H, Yuzaki M. The δ2 glutamate receptor gates long-term depression by coordinating interactions between two AMPA receptor phosphorylation sites. Proc Natl Acad Sci USA. 2013;110:E948–57.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Konno K, Matsuda K, Nakamoto C, Uchigashima M, Miyazaki T, Yamasaki M, Sakimura K, Yuzaki M, Watanabe M. Enriched expression of GluD1 in higher brain regions and its involvement in parallel fiber-interneuron synapse formation in the cerebellum. J Neurosci. 2014;34:7412–24.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Maier A, Klopocki E, Horn D, Tzschach A, Holm T, Meyer R, et al. De novo partial deletion in GRID2 presenting with complicated spastic paraplegia. Muscle Nerve. 2014;49:289–92.CrossRefPubMedGoogle Scholar
  22. Matsuda K, Yuzaki M. Cbln family proteins promote synapse formation by regulating distinct neurexin signaling pathways in various brain regions. Eur J Neurosci. 2011;33:1447–61.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Matsuda K, Miura E, Miyazaki T, Kakegawa W, Emi K, Narumi S, et al. Cbln1 is a ligand for an orphan glutamate receptor delta2, a bidirectional synapse organizer. Science. 2010;328:363–8.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Matsuda S, Launey T, Mikawa S, Hirai H. Disruption of AMPA receptor GluR2 clusters following long-term depression induction in cerebellar Purkinje neurons. EMBO J. 2000;19:2765–74.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Naur P, Hansen KB, Kristensen AS, Dravid SM, Pickering DS, Olsen L, et al. Ionotropic glutamate-like receptor delta2 binds D-serine and glycine. Proc Natl Acad Sci USA. 2007;104:14116–21.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Smith M, Spence MA, Flodman P. Nuclear and mitochondrial genome defects in autisms. Ann NY Acad Sci. 2009;1151:102–32.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Treutlein J, Muhleisen TW, Frank J, Mattheisen M, Herms S, Ludwig KU, et al. Dissection of phenotype reveals possible association between schizophrenia and glutamate receptor delta 1 (GRID1) gene promoter. Schizophr Res. 2009;111:123–30.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Utine GE, Haliloğlu G, Salanci B, Çetinkaya A, Kiper PÖ, Alanay Y, et al. A homozygous deletion in GRID2 causes a human phenotype with cerebellar ataxia and atrophy. J Child Neurol. 2013;28:926–32.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Van Schil K, Meire F, Karlstetter M, Bauwens M, Verdin H, Coppieters F, et al. Early-onset autosomal recessive cerebellar ataxia associated with retinal dystrophy: new human hotfoot phenotype caused by homozygous GRID2 deletion. Genet Med. 2015;17:291–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Yadav R, Rimerman R, Scofield MA, Dravid SM. Mutations in the transmembrane domain M3 generate spontaneously open orphan glutamate delta 1 receptor. Brain Res. 2011;1382:1–8.CrossRefPubMedGoogle Scholar
  31. Yadav R, Gupta SC, Hillman BG, Bhatt JM, Stairs DJ, Dravid SM. Deletion of glutamate delta-1 receptor in mouse leads to aberrant emotional and social behaviors. PLoS One. 2012;7:e32969.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Yadav R, Hillman BG, Gupta SC, Suryavanshi P, Bhatt JM, Pavuluri R, Stairs DJ, Dravid SM. Deletion of glutamate delta-1 receptor in mouse leads to enhanced working memory and deficit in fear conditioning. PLoS One. 2013;8:e60785.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Yamasaki M, Miyazaki T, Azechi H, Abe M, Natsume R, Hagiwara T, et al. Glutamate receptor delta2 is essential for input pathway-dependent regulation of synaptic AMPAR contents in cerebellar Purkinje cells. J Neurosci. 2011;31:3362–74.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Yuzaki M. Delta receptors. In: Gereau RW, Swanson GT, editors. The glutamate receptors. Totowa: Humana; 2008.Google Scholar
  35. Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature. 1997;388:769–73.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Kazuhisa Kohda
    • 1
    • 2
    Email author
  • Wataru Kakegawa
    • 1
  • Michisuke Yuzaki
    • 3
  1. 1.Department of NeurophysiologyKeio University School of MedicineShinjuku-kuJapan
  2. 2.Department of PhysiologySt. Marianna University School of MedicineKawasakiJapan
  3. 3.Department of NeurophysiologySchool of Medicine, Keio UniversityShinjuku-ku, TokyoJapan