Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Joshua T. PiotrowskiEmail author
  • Daniel D. Billadeau
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_631


Historical Background

WASH (Wiskott-Aldrich Syndrome Protein and SCAR Homolog) was initially identified in 2007 as a novel member of the WASP (Wiskott-Aldrich Syndrome Protein) superfamily of nucleation-promoting factors (NPFs) (Linardopoulou et al. 2007). In addition to WASH, this family includes the founding member WASP as well as N-WASP (Neuronal Wiskott–Aldrich Syndrome Protein), three WAVE/SCAR (WASP family Verprolin-homologous protein/Suppressor of cAR) isoforms, WHAMM (WASP Homolog associated with Actin, Membranes, and Microtubules), and JMY (Junction Mediating and Regulatory Protein) (Campellone and Welch 2010). WASH orthologs are evolutionarily conserved from humans through Entameba and WASH mRNA (Messenger RNA) is ubiquitously expressed in human tissues (Linardopoulou et al. 2007). Further work comparing known genome sequences revealed that WASH is conserved down to the green algae Ostreocuccus...
This is a preview of subscription content, log in to check access.


  1. Anitei M, Wassmer T, Stange C, Hoflack B. Bidirectional transport between the trans-Golgi network and the endosomal system. Mol Membr Biol. 2010;27:443–56.PubMedCrossRefGoogle Scholar
  2. Bonifacino JS, Hurley JH. Retromer. Curr Opin Cell Biol. 2008;20:427–36.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Campellone KG, Welch MD. A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol. 2010;11:237–51.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Chen Z, Borek D, Padrick SB, Gomez TS, Metlagel Z, Ismail AM, et al. Structure and control of the actin regulatory WAVE complex. Nature. 2010;468:533–8.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Derivery E, Sousa C, Gautier JJ, Lombard B, Loew D, Gautreau A. The Arp2/3 activator WASH controls the fission of endosomes through a large multiprotein complex. Dev Cell. 2009;17:712–23.PubMedCrossRefGoogle Scholar
  6. Duleh SN, Welch MD. WASH and the Arp2/3 complex regulate endosome shape and trafficking. Cytoskeleton. 2010;67:193–206.PubMedPubMedCentralGoogle Scholar
  7. Gomez TS, Billadeau DD. A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev Cell. 2009;17:699–711.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Hänisch J, Ehinger J, Ladwein M, Rohde M, Derivery E, Bosse T, et al. Molecular dissection of Salmonella-induced membrane ruffling versus invasion. Cell Microbiol. 2010;12:84–98.PubMedCrossRefGoogle Scholar
  9. Harbour ME, Breusegem SYA, Antrobus R, Freeman C, Reid E, Seaman MNJ. The cargo-selective retromer complex is a recruiting hub for protein complexes that regulate endosomal tubule dynamics. J Cell Sci. 2010;123:3703–17.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Huang C-Y, Lu T-Y, Bair C-H, Chang Y-S, Jwo J-K, Chang W. A novel cellular protein, VPEF, facilitates vaccinia virus penetration into HeLa cells through fluid phase endocytosis. J Virol. 2008;82:7988–99.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Jia D, Gomez TS, Metlagel Z, Umetani J, Otwinowski Z, Rosen MK, et al. WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes. Proc Natl Acad Sci U S A. 2010;107:10442–7.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Linardopoulou EV, Parghi SS, Friedman C, Osborn GE, Parkhurst SM, Trask BJ. Human subtelomeric WASH genes encode a new subclass of the WASP family. PLoS Genet. 2007;3:e237.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Liu R, Abreu-Blanco MT, Barry KC, Linardopoulou EV, Osborn GE, Parkhurst SM. Wash functions downstream of Rho and links linear and branched actin nucleation factors. Development. 2009;136:2849–60.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Monfregola J, Napolitano G, D’urso M, Lappalainen P, Ursini MV. Functional characterization of Wiskott-Aldrich Syndrome Protein and Scar Homolog (WASH), a bi-modular nucleation-promoting factor able to interact with biogenesis of lysosome-related organelle subunit 2 (BLOS2) and -Tubulin. J Biol Chem. 2010;285:16951–7.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Ramesh N, Geha R. Recent advances in the biology of WASP and WIP. Immunol Res. 2009;44:99–111.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Rottner K, Hänisch J, Campellone KG. WASH, WHAMM and JMY: regulation of Arp2/3 complex and beyond. Trends Cell Biol. 2010;20:650–61.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Stradal TEB, Scita G. Protein complexes regulating Arp2/3-mediated actin assembly. Curr Opin Cell Biol. 2006;18:4–10.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Stradal TEB, Rottner K, Disanza A, Confalonieri S, Innocenti M, Scita G. Regulation of actin dynamics by WASP and WAVE family proteins. Trends Cell Biol. 2004;14:303–11.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Takenawa T, Suetsugu S. The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol. 2007;8:37–48.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Veltman DM, Insall RH. WASP family proteins: their evolution and its physiological implications. Mol Biol Cell. 2010;21:2880–93.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Immunology, College of MedicineMayo ClinicRochesterUSA
  2. 2.Division of Oncology Research, Schulze Center for Novel Therapeutics, College of MedicineMayo ClinicRochesterUSA