Skip to main content

VAMP1/2/3/7

  • Reference work entry
  • First Online:
  • 70 Accesses

Overview

Intracellular membrane trafficking in eukaryotes is a multiple step process consisting in the budding of vesicles from a donor compartment, their translocation into the cytoplasm along cytoskeletal elements, their tethering, and subsequent fusion with the membrane of the target compartment. Membrane fusion is based on SNARE proteins, classified into two categories, vesicular (v)-SNAREs and target (t)-SNAREs present on the acceptor membrane. It is the specific pairing of v-SNAREs with their cognate t-SNAREs in trans which is responsible for bringing the lipid bilayers close together, and the zippering of SNAREs provides the required energy for membrane fusion (Fig. 1). This review focuses on the discovery of SNAREs and then on four of the nine v-SNAREs: the clostridial neurotoxin sensitive VAMPs 1, 2, and 3 and on Tetanus neurotoxin-Insensitive Vesicle-Associated Membrane Protein, TI-VAMP/VAMP7. VAMP7, unlike the first ones, possess a long amino-terminal domain called the...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Balch WE, Dunphy WG, Braell WA, Rothman JE. Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell. 1984;39:405–16.

    Article  PubMed  CAS  Google Scholar 

  • Barber M, Arai Y, Morishita Y, Vigier L, Causeret F, Borello U, Ledonne F, Coppola E, Contremoulins V, Pfrieger FW, Tissir F, Govindan S, Jabaudon D, Proux-Gillardeaux V, Galli T, Pierani A. Migration Speed of Cajal-Retzius Cells Modulated by Vesicular Trafficking Controls the Size of Higher-Order Cortical Areas. Curr Biol. 2015;25:2466–78.

    Article  PubMed  CAS  Google Scholar 

  • Ben Fredj N, Hammond S, Otsuna H, Chien CB, Burrone J, Meyer MP. Synaptic activity and activity-dependent competition regulates axon arbor maturation, growth arrest, and territory in the retinotectal projection. J Neurosci. 2010;30:10939–51.

    Article  PubMed  CAS  Google Scholar 

  • Block MR, Rothman JE. Purification of N-ethylmaleimide-sensitive fusion protein. Methods Enzymol. 1992;219:300–9.

    Article  PubMed  CAS  Google Scholar 

  • Borisovska M, Zhao Y, Tsytsyura Y, Glyvuk N, Takamori S, Matti U, Rettig J, Sudhof T, Bruns D. v-SNAREs control exocytosis of vesicles from priming to fusion. EMBO J. 2005;24:2114–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braun V, Fraisier V, Raposo G, Hurbain I, Sibarita J, Chavrier P, Galli T, Niedergang F. TI-VAMP/VAMP7 is required for optimal phagocytosis of opsonised particles in macrophages. EMBO J. 2004;23:4166–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burgo A, Casano A, Kuster A, Arold ST, Wang G, Nola S, Verraes A, Dingli F, Loew D, Galli T. Increased activity of the v-SNARE TI-VAMP/VAMP7 by tyrosine phosphorylation in the Longin domain. J Biol Chem. 2013. https://doi.org/10.1074/jbc.M112.415075.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgo A, Proux-Gillardeaux V, Sotirakis E, Bun P, Casano A, Verraes A, Liem RK, Formstecher E, Coppey-Moisan M, Galli T. A molecular network for the transport of the TI-VAMP/VAMP7 vesicles from cell center to periphery. Dev Cell. 2012;23:166–80.

    Article  PubMed  CAS  Google Scholar 

  • Chaineau M, Danglot L, Galli T. Multiple roles of the vesicular-SNARE TI-VAMP in post-Golgi and endosomal trafficking. FEBS Lett. 2009;583:3817–26.

    Article  PubMed  CAS  Google Scholar 

  • Chaineau M, Danglot L, Proux-Gillardeaux V, Galli T. Role of HRB in clathrin-dependent endocytosis. J Biol Chem. 2008;283:34365–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiaruttini G, Piperno GM, Jouve M, De Nardi F, Larghi P, Peden AA, Baj G, Muller S, Valitutti S, Galli T, Benvenuti F. The SNARE VAMP7 Regulates Exocytic Trafficking of Interleukin-12 in Dendritic Cells. Cell Rep. 2016;14:2624–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cotrufo T, Perez-Branguli F, Muhaisen A, Ros O, Andres R, Baeriswyl T, Fuschini G, Tarrago T, Pascual M, Urena J, Blasi J, Giralt E, Stoeckli ET, Soriano E. A Signaling Mechanism Coupling Netrin-1/Deleted in Colorectal Cancer Chemoattraction to SNARE-Mediated Exocytosis in Axonal Growth Cones. J Neurosci. 2011;31:14463–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danglot L, Chaineau M, Dahan M, Gendron M, Boggetto N, Perez F, Galli T. Role of TI-VAMP and CD82 in EGFR cell-surface dynamics and signaling. J Cell Sci. 2010;123:723–35.

    Article  CAS  PubMed  Google Scholar 

  • Danglot L, Zylbersztejn K, Petkovic M, Gauberti M, Meziane H, Combe R, Champy MF, Birling MC, Pavlovic G, Bizot JC, Trovero F, Della Ragione F, Proux-Gillardeaux V, Sorg T, Vivien D, D’Esposito M, Galli T. Absence of TI-VAMP/Vamp7 leads to increased anxiety in mice. J Neurosci. 2012;32:1962–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das V, Nal B, Dujeancourt A, Thoulouze M, Galli T, Roux P, Dautry-Varsat A, Alcover A. Activation-induced polarized recycling targets T cell antigen receptors to the immunological synapse: involvement of SNARE complexes. Immunity. 2004;20:577–88.

    Article  CAS  PubMed  Google Scholar 

  • Daste F, Galli T, Tareste D. Structure and function of longin SNAREs. J Cell Sci. 2015;128:4263–72.

    Article  CAS  PubMed  Google Scholar 

  • Deak F, Shin OH, Kavalali ET, Sudhof TC. Structural determinants of synaptobrevin 2 function in synaptic vesicle fusion. J Neurosci. 2006;26:6668–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fader CM, Sanchez DG, Mestre MB, Colombo MI. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim Biophys Acta. 2009;1793:1901–16.

    Article  CAS  PubMed  Google Scholar 

  • Feldmann A, Amphornrat J, Schonherr M, Winterstein C, Mobius W, Ruhwedel T, Danglot L, Nave K, Galli T, Bruns D, Trotter J, Kramer-Albers E. Transport of the Major Myelin Proteolipid Protein Is Directed by VAMP3 and VAMP7. J Neurosci. 2011;31:5659–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fields I, Shteyn E, Pypaert M, Proux-Gillardeaux V, Kang R, Galli T, Folsch H. v-SNARE cellubrevin is required for basolateral sorting of AP-1 B-dependent cargo in polarized epithelial cells. J Cell Biol. 2007;177:477–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finetti F, Patrussi L, Galgano D, Cassioli C, Perinetti G, Pazour GJ, Baldari CT. The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling T-cell receptors to the immune synapse. J Cell Sci. 2015;128:2541–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flaumenhaft R. Molecular basis of platelet granule secretion. Arterioscler Thromb Vasc Biol. 2003;23:1152–60.

    Article  CAS  PubMed  Google Scholar 

  • Galli T, Chilcote T, Mundigl O, Binz T, Niemann H, De Camilli P. Tetanus toxin-mediated cleavage of cellubrevin impairs exocytosis of transferrin receptor-containing vesicles in CHO cells. J Cell Biol. 1994;125:1015–24.

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Hirata M, Mizokami A, Zhao J, Takahashi I, Takeuchi H. Differential role of SNAP-25 phosphorylation by protein kinases A and C in the regulation of SNARE complex formation and exocytosis in PC12 cells. Cell Signal. 2016;28:425–37.

    Article  CAS  PubMed  Google Scholar 

  • Gerst JE. SNARE regulators: matchmakers and matchbreakers. BBA-Mol Cell Res. 2003;18:2–3.

    Google Scholar 

  • Grassi D, Plonka FB, Oksdath M, Guil AN, Sosa LJ, Quiroga S. Selected SNARE proteins are essential for the polarized membrane insertion of igf-1 receptor and the regulation of initial axonal outgrowth in neurons. Cell Discov. 2015;1:15023.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupton SL, Gertler FB. Integrin signaling switches the cytoskeletal and exocytic machinery that drives neuritogenesis. Dev Cell. 2010;18:725–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hackam DJ, Rotstein OD, Sjolin C, Schreiber AD, Trimble WS, Grinstein S. v-SNARE-dependent secretion is required for phagocytosis. Proc Natl Acad Sci USA. 1998;95:11691–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hager HA, Roberts RJ, Cross EE, Proux-Gillardeaux V, Bader DM. Identification of a novel Bves function: regulation of vesicular transport. Embo J. 2010;29:532–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hasan N, Corbin D, Hu C. Fusogenic pairings of vesicle-associated membrane proteins (VAMPs) and plasma membrane t-SNAREs – VAMP5 as the exception. PLoS One. 2010;5:e14238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hou JC, Min L, Pessin JE. Insulin granule biogenesis, trafficking and exocytosis. Vitam Horm. 2009;80:473–506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hua Z, Leal-Ortiz S, Foss SM, Waites CL, Garner CC, Voglmaier SM, Edwards RH. v-SNARE Composition Distinguishes Synaptic Vesicle Pools. Neuron. 2011;71:474–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jahn R, Scheller RH. SNAREs - engines for membrane fusion. Nat Rev Mol Cell Biol. 2006;7:631–43.

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Coleman J, Yang R, Melia TJ, Rothman JE, Tareste D. Protein determinants of SNARE-mediated lipid mixing. Biophys J. 2010;99:553–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kay JG, Murray RZ, Pagan JK, Stow JL. Cytokine secretion via cholesterol-rich lipid raft-associated SNAREs at the phagocytic cup. J Biol Chem. 2006;281:11949–54.

    Article  CAS  PubMed  Google Scholar 

  • Kerschensteiner D, Morgan JL, Parker ED, Lewis RM, Wong RO. Neurotransmission selectively regulates synapse formation in parallel circuits in vivo. Nature. 2009;460:1016–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larghi P, Williamson D, Carpier J, Dogniaux S, Chemin K, Bohineust A, Danglot L, Gaus K, Galli T, Hivroz C. VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCR-activation sites. Nat Immunol. 2013;14:723–31.

    Article  CAS  PubMed  Google Scholar 

  • Li F, Pincet F, Perez E, Eng WS, Melia TJ, Rothman JE, Tareste D. Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat Struct Mol Biol. 2007;14:890–6.

    Article  CAS  PubMed  Google Scholar 

  • Ligeon LA, Moreau K, Barois N, Bongiovanni A, Lacorre DA, Werkmeister E, Proux-Gillardeaux V, Galli T, Lafont F. Role of VAMP3 and VAMP7 in the commitment of Yersinia pseudotuberculosis to LC3-associated pathways involving single- or double-membrane vacuoles. Autophagy. 2014;10:1588–602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, Sugiura Y, Lin W. The role of Synaptobrevin1/VAMP1 in Ca2+-triggered neurotransmitter release at the mouse neuromuscular junction. J Physiol. 2011;589:1603–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luftman K, Hasan N, Day P, Hardee D, Hu C. Silencing of VAMP3 inhibits cell migration and integrin-mediated adhesion. Biochem Biophys Res Commun. 2009. https://doi.org/10.1016/j.bbrc.2009.01.036.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mallard F, Tang B, Galli T, Tenza D, Saint-Pol A, Yue X, Antony C, Hong W, Goud B, Johannes L. Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. J Cell Biol. 2002;156:653–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malmersjo S, Di Palma S, Diao J, Lai Y, Pfuetzner RA, Wang AL, McMahon MA, Hayer A, Porteus M, Bodenmiller B, Brunger AT, Meyer T. Phosphorylation of residues inside the SNARE complex suppresses secretory vesicle fusion. EMBO J. 2016;35:1810–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manca P, Mameli O, Caria MA, Torrejon-Escribano B, Blasi J. Distribution of SNAP25, VAMP1 and VAMP2 in mature and developing deep cerebellar nuclei after estrogen administration. Neuroscience. 2014;266:102–15.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Arca S, Alberts P, Zahraoui A, Louvard D, Galli T. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth. J Cell Biol. 2000;149:889–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez-Arca S, Rudge R, Vacca M, Raposo G, Camonis J, Proux-Gillardeaux V, Daviet L, Formstecher E, Hamburger A, Filippini F, D’Esposito M, Galli T. A dual mechanism controlling the localization and function of exocytic v-SNAREs. Proc Natl Acad Sci USA. 2003;100:9011–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohrmann R, de Wit H, Verhage M, Neher E, Sorensen JB. Fast vesicle fusion in living cells requires at least three SNARE complexes. Science. 2010;330:502–5.

    Article  CAS  PubMed  Google Scholar 

  • Molino D, Nola S, Lam SM, Verraes A, Proux-Gillardeaux V, Boncompain G, Perez F, Wenk M, Shui G, Danglot L, Galli T. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein in membrane domains transport and homeostasis. Cell Logist. 2015;5:e1025182.

    Article  PubMed  PubMed Central  Google Scholar 

  • Montecucco C, Schiavo G, Pantano S. SNARE complexes and neuroexocytosis: how many, how close? Trends Biochem Sci. 2005;30:367–72.

    Article  CAS  PubMed  Google Scholar 

  • Moreau K, Ravikumar B, Renna M, Puri C, Rubinsztein DC. Autophagosome precursor maturation requires homotypic fusion. Cell. 2011;146:303–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murray RZ, Kay JG, Sangermani DG, Stow JL. A role for the phagosome in cytokine secretion. Science. 2005;310:1492–5.

    Article  CAS  PubMed  Google Scholar 

  • Muzerelle A, Alberts P, Martinez-Arca S, Jeannequin O, Lafaye P, Mazie J, Galli T, Gaspar P. Tetanus neurotoxin-insensitive vesicle-associated membrane protein localizes to a presynaptic membrane compartment in selected terminal subsets of the rat brain. Neuroscience. 2003;122:59–75.

    Article  CAS  PubMed  Google Scholar 

  • Orci L, Malhotra V, Amherdt M, Serafini T, Rothman JE. Dissection of a single round of vesicular transport: sequential intermediates for intercisternal movement in the Golgi stack. Cell. 1989;56:357–68.

    Article  CAS  PubMed  Google Scholar 

  • Polgar J, Chung SH, Reed GL. Vesicle-associated membrane protein 3 (VAMP-3) and VAMP-8 are present in human platelets and are required for granule secretion. Blood. 2002;100:1081–3.

    Article  CAS  PubMed  Google Scholar 

  • Prescott GR, Chamberlain LH. Regional and developmental brain expression patterns of SNAP25 splice variants. BMC Neurosci. 2011;12:35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Proux-Gillardeaux V, Galli T. Targeting the epithelial SNARE machinery by bacterial neurotoxins. Methods Mol Biol. 2008;440:187–201.

    Article  CAS  PubMed  Google Scholar 

  • Proux-Gillardeaux V, Gavard J, Irinopoulou T, Mege R, Galli T. Tetanus neurotoxin-mediated cleavage of cellubrevin impairs epithelial cell migration and integrin-dependent cell adhesion. Proc Natl Acad Sci USA. 2005a;102:6362–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Proux-Gillardeaux V, Raposo G, Irinopoullou T, Galli T. Expression of the Longin domain of TI-VAMP impairs lysosomal secretion and epithelial cell migration. Biol Cell. 2007;99:261–71.

    Article  CAS  PubMed  Google Scholar 

  • Proux-Gillardeaux V, Rudge R, Galli T. The tetanus neurotoxin-sensitive and insensitive routes to and from the plasma membrane: fast and slow pathways? Traffic. 2005b;6:366–73.

    Article  CAS  PubMed  Google Scholar 

  • Pryor PR, Jackson L, Gray SR, Edeling MA, Thompson A, Sanderson CM, Evans PR, Owen DJ, Luzio JP. Molecular basis for the sorting of the SNARE VAMP7 into endocytic clathrin-coated vesicles by the ArfGAP Hrb. Cell. 2008;134:817–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pryor PR, Luzio JP. Delivery of endocytosed membrane proteins to the lysosome. Biochim Biophys Acta. 2009;1793:615–24.

    Article  CAS  PubMed  Google Scholar 

  • Rao S, Huynh C, Proux-Gillardeaux V, Galli T, Andrews N. Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis. J Biol Chem. 2004;279:20471–9.

    Article  CAS  PubMed  Google Scholar 

  • Raptis A, Torrejon-Escribano B, Gomez de Aranda I, Blasi J. Distribution of synaptobrevin/VAMP 1 and 2 in rat brain. J Chem Neuroanat. 2005;30:201–11.

    Article  CAS  PubMed  Google Scholar 

  • Ropert N, Jalil A, Li D. Expression and cellular function of vSNARE proteins in brain astrocytes. Neuroscience. 2016;323:76–83.

    Article  CAS  PubMed  Google Scholar 

  • Rothman JE, Warren G. Implication of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr Biol. 1994;4:220–33.

    Article  CAS  PubMed  Google Scholar 

  • Scheuber A, Rudge R, Danglot L, Raposo G, Binz T, Poncer JC, Galli T. Loss of AP-3 function affects spontaneous and evoked release at hippocampal mossy fiber synapses. Proc Natl Acad Sci USA. 2006;103:16562–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sherry DM, Wang MM, Frishman LJ. Differential distribution of vesicle associated membrane protein isoforms in the mouse retina. Mol Vis. 2003;9:673–88.

    CAS  PubMed  Google Scholar 

  • Skalski M, Coppolino MG. SNARE-mediated trafficking of alpha5beta1 integrin is required for spreading in CHO cells. Biochem Biophys Res Commun. 2005;335:1199–210.

    Article  CAS  PubMed  Google Scholar 

  • Skalski M, Yi Q, Kean MJ, Myers DW, Williams KC, Burtnik A, Coppolino MG. Lamellipodium extension and membrane ruffling require different SNARE-mediated trafficking pathways. BMC Cell Biol. 2010;11:62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slezak M, Grosche A, Niemiec A, Tanimoto N, Pannicke T, Munch TA, Crocker B, Isope P, Hartig W, Beck SC, Huber G, Ferracci G, Perraut M, Reber M, Miehe M, Demais V, Leveque C, Metzger D, Szklarczyk K, Przewlocki R, Seeliger MW, Sage-Ciocca D, Hirrlinger J, Reichenbach A, Reibel S, Pfrieger FW. Relevance of exocytotic glutamate release from retinal glia. Neuron. 2012;74:504–16.

    Article  CAS  PubMed  Google Scholar 

  • Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell. 1993a;75:409–18.

    Article  PubMed  Google Scholar 

  • Söllner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993b;362:318–24.

    Article  PubMed  Google Scholar 

  • Steffen A, Le Dez G, Poincloux R, Recchi C, Nassoy P, Rottner K, Galli T, Chavrier P. MT1-MMP-dependent invasion is regulated by TI-VAMP/VAMP7. Curr Biol. 2008;18:926–31.

    Article  CAS  PubMed  Google Scholar 

  • Sudhof TC. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron. 2013;80:675–90.

    Article  CAS  PubMed  Google Scholar 

  • Szalinski CM, Labilloy A, Bruns JR, Weisz OA. VAMP7 modulates ciliary biogenesis in kidney cells. PLoS One. 2014;9:e86425.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tayeb MA, Skalski M, Cha MC, Kean MJ, Scaife M, Coppolino MG. Inhibition of SNARE-mediated membrane traffic impairs cell migration. Exp Cell Res. 2005;305:63–73.

    Article  CAS  PubMed  Google Scholar 

  • Trimble WS. Analysis of the structure and expression of the VAMP family of synaptic vesicle proteins. J Physiol Paris. 1993;87:107–15.

    Article  CAS  PubMed  Google Scholar 

  • van den Bogaart G, Holt MG, Bunt G, Riedel D, Wouters FS, Jahn R. One SNARE complex is sufficient for membrane fusion. Nat Struct Mol Biol. 2010;17:358–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veale KJ, Offenhauser C, Whittaker SP, Estrella RP, Murray RZ. Recycling endosome membrane incorporation into the leading edge regulates lamellipodia formation and macrophage migration. Traffic. 2010;11:1370–9.

    Article  CAS  PubMed  Google Scholar 

  • Vivona S, Liu CW, Strop P, Rossi V, Filippini F, Brunger AT. The longin SNARE VAMP7/TI-VAMP adopts a closed conformation. J Biol Chem. 2010;285:17965–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wada N, Kishimoto Y, Watanabe D, Kano M, Hirano T, Funabiki K, Nakanishi S. Conditioned eyeblink learning is formed and stored without cerebellar granule cell transmission. Proc Natl Acad Sci USA. 2007;104:16690–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams KC, McNeilly RE, Coppolino MG. SNAP23, Syntaxin4, and vesicle-associated membrane protein 7 (VAMP7) mediate trafficking of membrane type 1-matrix metalloproteinase (MT1-MMP) during invadopodium formation and tumor cell invasion. Mol Biol Cell. 2014;25:2061–70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wojnacki Fonseca JI, Galli T. Membrane traffic during axon development. Dev Neurobiol. 2016. https://doi.org/10.1002/dneu.22390.

    Article  Google Scholar 

  • Yamamoto M, Wada N, Kitabatake Y, Watanabe D, Anzai M, Yokoyama M, Teranishi Y, Nakanishi S. Reversible suppression of glutamatergic neurotransmission of cerebellar granule cells in vivo by genetically manipulated expression of tetanus neurotoxin light chain. J Neurosci. 2003;23:6759–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zylbersztejn K, Petkovic M, Burgo A, Deck M, Garel S, Marcos S, Bloch-Gallego E, Nothias F, Serini G, Bagnard D, Binz T, Galli T. The vesicular SNARE Synaptobrevin is required for Semaphorin 3A axonal repulsion. J Cell Biol. 2012;196:37–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to all the authors that are not cited in the text due to strong reference limitation. Our work is supported in part by the Institut National de la Santé et de la Recherche Médicale (INSERM), and the Centre National de la Recherche Scientifique (CNRS) and grants from the Fondation pour la Recherche Médicale (FRM), the Association pour la Recherche sur le Cancer (ARC), and the Who am I? Labex (Idex ANR-11-IDEX-0005-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thierry GALLI or Véronique Proux-Gillardeaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

GALLI, T., Proux-Gillardeaux, V. (2018). VAMP1/2/3/7. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_627

Download citation

Publish with us

Policies and ethics