Skip to main content

HIPK2

  • Reference work entry
  • First Online:
Encyclopedia of Signaling Molecules

Synonyms

PKM (hamster); STANK

Historical Background

The homeodomain-interacting protein kinase 2 (HIPK2) was first described in 1998 as member of a novel protein kinase family (HIPK1-3) able to interact with homeodomain transcription factors of the NK-2 family and to enhance their repressor activity (Kim et al. 1998). Over the next years, it was shown that HIPK2 very likely is an autophosphorylating Ser/Thr kinase which localizes to nuclear speckles (see Fig. 1), and a number of interaction partners and putative targets such as the death receptor CD95, the corepressor Groucho, or a STAT3 peptide were identified. The HIPK2 genes were mapped to Chr. 7q32–42 in humans and to Chr. 6B in the mouse.

HIPK2, Fig. 1
figure 919 figure 919

The HIPK2 protein. (a) Schematic drawing of important domains and interactions of the HIPK2 protein. NLS, nuclear localization signal; SIM, SUMO interaction motif. (b) Nuclear speckle localization of exogenously expressed GFP-HIPK2 in U2OS cells

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An R, da Silva XG, Semplici F, Vakhshouri S, Hao HX, Rutter J, et al. Pancreatic and duodenal homeobox 1 (PDX1) phosphorylation at serine-269 is HIPK2-dependent and affects PDX1 subnuclear localization. Biochem Biophys Res Commun. 2010;399(2):155–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bitomsky N, Hofmann TG. Apoptosis and autophagy: regulation of apoptosis by DNA damage signalling - roles of p53, p73 and HIPK2. FEBS J. 2009;276(21):6074–83.

    Article  PubMed  CAS  Google Scholar 

  • Bon G, Di Carlo SE, Folgiero V, Avetrani P, Lazzari C, D’Orazi G, et al. Negative regulation of beta4 integrin transcription by homeodomain-interacting protein kinase 2 and p53 impairs tumor progression. Cancer Res. 2009;69(14):5978–86.

    Article  PubMed  CAS  Google Scholar 

  • Boucher MJ, Simoneau M, Edlund H. The homeodomain-interacting protein kinase 2 regulates insulin promoter factor-1/pancreatic duodenal homeobox-1 transcriptional activity. Endocrinology. 2009;150(1):87–97.

    Article  PubMed  CAS  Google Scholar 

  • Bracaglia G, Conca B, Bergo A, Rusconi L, Zhou Z, Greenberg ME, et al. Methyl-CpG-binding protein 2 is phosphorylated by homeodomain-interacting protein kinase 2 and contributes to apoptosis. EMBO Rep. 2009;10(12):1327–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calzado MA, de la Vega L, Moller A, Bowtell DD, Schmitz ML. An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response. Nat Cell Biol. 2009a;11(1):85–91.

    Article  PubMed  CAS  Google Scholar 

  • Calzado MA, De La Vega L, Munoz E, Schmitz ML. From top to bottom: the two faces of HIPK2 for regulation of the hypoxic response. Cell Cycle. 2009b;8(11):1659–64.

    Article  PubMed  CAS  Google Scholar 

  • Cin H, Meyer C, Herr R, Janzarik WG, Lambert S, Jones DT, et al. Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol. 2011;121(6):763–74.

    Article  PubMed  CAS  Google Scholar 

  • D’Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, et al. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol. 2002;4(1):11–9.

    Article  PubMed  CAS  Google Scholar 

  • de la Vega L, Frobius K, Moreno R, Calzado MA, Geng H, Schmitz ML. Control of nuclear HIPK2 localization and function by a SUMO interaction motif. Biochim Biophys Acta. 2010;1813(2):283–97.

    Article  PubMed  CAS  Google Scholar 

  • Hattangadi SM, Burke KA, Lodish HF. Homeodomain-interacting protein kinase 2 plays an important role in normal terminal erythroid differentiation. Blood. 2010;115(23):4853–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hikasa H, Ezan J, Itoh K, Li X, Klymkowsky MW, Sokol SY. Regulation of TCF3 by Wnt-dependent phosphorylation during vertebrate axis specification. Dev Cell. 2010;19(4):521–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hofmann TG, Möller A, Sirma H, Zentgraf H, Taya Y, Dröge W, Will H, Schmitz ML. Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol. 2002;4(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Kagawa T, Inoue-Mochita M, Isono K, Ohtsu N, Nobuhisa I, et al. Involvement of the Hipk family in regulation of eyeball size, lens formation and retinal morphogenesis. FEBS Lett. 2010;584(14):3233–8.

    Article  PubMed  CAS  Google Scholar 

  • Isono K, Nemoto K, Li Y, Takada Y, Suzuki R, Katsuki M, et al. Overlapping roles for homeodomain-interacting protein kinases hipk1 and hipk2 in the mediation of cell growth in response to morphogenetic and genotoxic signals. Mol Cell Biol. 2006;26(7):2758–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim YH, Choi CY, Lee SJ, Conti MA, Kim Y. Homeodomain-interacting protein kinases, a novel family of co-repressors for homeodomain transcription factors. J Biol Chem. 1998;273(40):25875–9.

    Article  PubMed  CAS  Google Scholar 

  • Krieghoff-Henning E, Hofmann TG. HIPK2 and cancer cell resistance to therapy. Future Oncol. 2008;4(6):751–4.

    Article  PubMed  Google Scholar 

  • Lee W, Andrews BC, Faust M, Walldorf U, Verheyen EM. Hipk is an essential protein that promotes notch signal transduction in the drosophila eye by inhibition of the global co-repressor Groucho. Dev Biol. 2009;325(1):263–72.

    Article  PubMed  CAS  Google Scholar 

  • Li H, Costantini C, Scrable H, Weindruch R, Puglielli L. Egr-1 and Hipk2 are required for the TrkA to p75(NTR) switch that occurs downstream of IGF1-R. Neurobiol Aging. 2009;30(12):2010–20.

    Article  PubMed  CAS  Google Scholar 

  • Link N, Chen P, Lu WJ, Pogue K, Chuong A, Mata M, et al. A collective form of cell death requires homeodomain interacting protein kinase. J Cell Biol. 2007;178(4):567–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puca R, Nardinocchi L, Givol D, D’Orazi G. Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells. Oncogene. 2010;29(31):4378–87.

    Article  PubMed  CAS  Google Scholar 

  • Rinaldo C, Prodosmo A, Siepi F, Soddu S. HIPK2: a multitalented partner for transcription factors in DNA damage response and development. Biochem Cell Biol. 2007;85(4):411–8.

    Article  PubMed  CAS  Google Scholar 

  • Ritterhoff S, Farah CM, Grabitzki J, Lochnit G, Skurat AV, Schmitz ML. The WD40-repeat protein Han11 functions as a scaffold protein to control HIPK2 and MEKK1 kinase functions. EMBO J. 2010;29(22):3750–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakamoto K, Huang BW, Iwasaki K, Hailemariam K, Ninomiya-Tsuji J, Tsuji Y. Regulation of genotoxic stress response by homeodomain-interacting protein kinase 2 through phosphorylation of cyclic AMP response element-binding protein at serine 271. Mol Biol Cell. 2010;21(16):2966–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sombroek D, Hofmann TG. How cells switch HIPK2 on and off. Cell Death Differ. 2009;16(2):187–94.

    Article  PubMed  CAS  Google Scholar 

  • Trapasso F, Aqeilan RI, Iuliano R, Visone R, Gaudio E, Ciuffini L, et al. Targeted disruption of the murine homeodomain-interacting protein kinase-2 causes growth deficiency in vivo and cell cycle arrest in vitro. DNA Cell Biol. 2009;28(4):161–7.

    Article  PubMed  CAS  Google Scholar 

  • Winter M, Sombroek D, Dauth I, Moehlenbrink J, Scheuermann K, Crone J, et al. Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR. Nat Cell Biol. 2008;10(7):812–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Hofmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hofmann, T.G., Krieghoff-Henning, E. (2018). HIPK2. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_618

Download citation

Publish with us

Policies and ethics