Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Recoverin

  • Pavel P. Philippov
  • Evgeni Y. Zernii
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_606

Synonyms

Historical Background

In 1989, P. Philippov’s group from M.V. Lomonosov Moscow State University invented a method for purification of the visual G-protein transducin (Gt) and other G-proteins. The idea of the method was based on the ability of visual rhodopsin to bind and to release transducin in the absence and in the presence of GTP, respectively. For this aim, a column with delipidated visual rhodopsin immobilized on Concanavalin A Sepharose was used. Chromatography of a crude extract of bovine rod outer segments on the column allowed one to obtain a set of transducin subunits with a slight contamination of cGMP-phosphodiesterase. Also, an admixture of an unknown protein with an apparent molecular weight of 26 K was seen on the electrophoregram. The unknown protein attracted the attention of the group since the capability of binding to rhodopsin had...

This is a preview of subscription content, log in to check access.

References

  1. Adamus G. The role of recoverin in autoimmunity. In: Philippov PP, Koch KW, editors. Neuronal calcium sensor proteins. New York: Nova Science Publishers; 2006. p. 181–99.Google Scholar
  2. Ames JB, Lim S. Molecular structure and target recognition of neuronal calcium sensor proteins. Biochim Biophys Acta. 2012;1820:1205–13.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bazhin AV, Savchenko MS, Shifrina ON, Demoura SA, Chikina SY, Jaques G, Kogan EA, Chuchalin AG, Philippov PP. Recoverin as a paraneoplastic antigen in lung cancer: the occurrence of anti-recoverin autoantibodies in sera and recoverin in tumors. Lung Cancer. 2004;44:193–8.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bazhin AV, Schadendorf D, Willner N, De Smet C, Heinzelmann A, Tikhomirova NK, Umansky V, Philippov PP, Eichmüller SB. Photoreceptor proteins as cancer-retina antigens. Int J Cancer. 2007;120:1268–76.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bazhin AV, De Smet C, Golovastova MO, Schmidt J, Philippov PP. Aberrant demethylation of the recoverin gene is involved in the aberrant expression of recoverin in cancer cells. Exp Dermatol. 2010;19:1023–5.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Burgoyne RD. Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci. 2007;8:182–93.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Calvez P, Demers E, Boisselier E, Salesse C. Analysis of the contribution of saturated and polyunsaturated phospholipid monolayers to the binding of proteins. Langmuir. 2011;27:1373–9.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chen CK, Woodruff ML, Chen FS, Chen Y, Cilluffo MC, Tranchina D, Fain GL. Modulation of mouse rod response decay by rhodopsin kinase and recoverin. J Neurosci. 2012;32:15998–6006.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chen CK, Woodruff ML, Fain GL. Rhodopsin kinase and recoverin modulate phosphodiesterase during mouse photoreceptor light adaptation. J Gen Physiol. 2015;145:213–24.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Förster JR, Lochnit G, Stöhr H. Proteomic analysis of the membrane palmitoylated protein-4 (MPP4)-associated protein complex in the retina. Exp Eye Res. 2009;88:39–48.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Fries R, Reddy PP, Mikhaylova M, Haverkamp S, Wei T, Müller M, Kreutz MR, Koch K-W. Dynamic cellular translocation of caldendrin is facilitated by the Ca2+-myristoyl switch of recoverin. J Neurochem. 2010;113:1150–62.PubMedPubMedCentralGoogle Scholar
  12. Gorodovikova EN, Philippov PP. The presence of a calcium-sensitive p26-containing complex in bovine retina rod cells. FEBS Lett. 1993;335:277–9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Grigoriev II, Senin II, Tikhomirova NK, Komolov KE, Permyakov SE, Zernii EY, Koch KW, Philippov PP. Synergetic effect of recoverin and calmodulin on regulation of rhodopsin kinase. Front Mol Neurosci. 2012;5:28.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Higgins MK, Oprian DD, Schertler GF. Recoverin binds exclusively to an amphipathic peptide at the N terminus of rhodopsin kinase, inhibiting rhodopsin phosphorylation without affecting catalytic activity of the kinase. J Biol Chem. 2006;281:19426–32.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Kawamura S. Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin. Nature. 1993;362:855–7.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Makino CL, Dodd RL, Chen J, Burns ME, Roca A, Simon MI, Baylor DA. Recoverin regulates light-dependent phosphodiesterase activity in retinal rods. J Gen Physiol. 2004;123:729–41.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Permyakov SE, Cherskaya AM, Wasserman LA, Khokhlova TI, Senin II, Zargarov AA, Zinchenko DV, Zernii EY, Lipkin VM, Philippov PP, Uversky VN, Permyakov EA. Recoverin is a zinc-binding protein. J Proteome Res. 2003;2:51–7.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Permyakov SE, Nazipova AA, Denesyuk AI, Bakunts AG, Zinchenko DV, Lipkin VM, Uversky VN, Permyakov EA. Recoverin as a redox-sensitive protein. J Proteome Res. 2007;6:1855–63.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Permyakov SE, Zernii EY, Knyazeva EL, Denesyuk AI, Nazipova AA, Kolpakova TV, Zinchenko DV, Philippov PP, Permyakov EA, Senin II. Oxidation mimicking substitution of conservative cysteine in recoverin suppresses its membrane association. Amino Acids. 2012;42:1435–42.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Philippov PP, Senin II, Koch K-W. Recoverin: a calcium-dependent regulator of the visual transduction. In: Philippov PP, Koch KW, editors. Neuronal calcium sensor proteins. New York: Nova Science Publishers; 2006. p. 139–51.Google Scholar
  21. Ranaghan MJ, Kumar RP, Chakrabarti KS, Buosi V, Kern D, Oprian DD. A highly conserved cysteine of neuronal calcium-sensing proteins controls cooperative binding of Ca2+ to recoverin. J Biol Chem. 2013;288:36160–7.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Sakurai K, Chen J, Khani SC, Kefalov VJ. Regulation of mammalian cone phototransduction by recoverin and rhodopsin kinase. J Biol Chem. 2015;290:9239–50.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Sampath AP, Strissel KJ, Elias R, Arshavsky VY, McGinnis JF, Chen J, Kawamura S, Rieke F, Hurley JB. Recoverin improves rod-mediated vision by enhancing signal transmission in the mouse retina. Neuron. 2005;46:413–20.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Senin II, Koch KW, Akhtar M, Philippov PP. Ca2+-dependent control of rhodopsin phosphorylation: recoverin and rhodopsin kinase. Adv Exp Med Biol. 2002;514:69–99.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Senin II, Churumova VA, Philippov PP, Koch K-W. Membrane binding of the neuronal calcium sensor recoverin - modulatory role of the charged carboxy-terminus. BMC Biochem. 2007;8:24.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Strissel KJ, Lishko PV, Trieu LH, Kennedy MJ, Hurley JB, Arshavsky VY. Recoverin undergoes light-dependent intracellular translocation in rod photoreceptors. J Biol Chem. 2005;280:29250–5.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Weiergräber OH, Senin II, Zernii EY, Churumova VA, Kovaleva NA, Nazipova AA, Permyakov SE, Permyakov EA, Philippov PP, Granzin J, Koch K-W. Tuning of a neuronal calcium sensor. J Biol Chem. 2006;281:37594–602.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Zernii EY, Komolov KE, Permyakov SE, Kolpakova T, Dell’Orco D, Poetzsch A, Knyazeva KL, Grigoriev II, Permyakov EA, Senin II, Philippov PP, Koch K-W. Involvement of recoverin C-terminal segment in recognition of the target enzyme rhodopsin kinase. Biochem J. 2011;435:441–50.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Zernii EY, Zinchenko DV, Vladimirov VI, Grigoriev II, Skorikova EE, Baksheeva VE, Lipkin VM, Philippov PP, Senin II. Ca2+-dependent regulatory activity of recoverin in photoreceptor raft structures: the role of caveolin-1. Biol Membr. 2013;30:380–6.Google Scholar
  30. Zernii EY, Nazipova AA, Gancharova OS, Kazakov AS, Serebryakova MV, Zinchenko DV, Tikhomirova NK, Senin II, Philippov PP, Permyakov EA, Permyakov SE. Light-induced disulfide dimerization of recoverin under ex vivo and in vivo conditions. Free Radic Biol Med. 2015;83:283–95.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Cell SignalingA.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State UniversityMoscowRussia