Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

G Protein Alpha 12 and 13

  • Thomas E. Meigs
  • Alex Lyakhovich
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_586

Synonyms

Historical Background

Heterotrimeric guanine nucleotide-binding proteins (G proteins) are composed of three distinct gene products: an α subunit that binds GTP or GDP, plus β and γ subunits. Positioned at the cytoplasmic face of the plasma membrane, this trimer associates with G protein-coupled receptors (GPCRs) harboring seven transmembrane spans. Extracellular GPCR stimulation causes the intracellular G protein α subunit to release GDP. The vacated nucleotide-binding site is filled by GTP from an abundant cytoplasmic pool, causing the α subunit to dissociate from the βγ dimer and drive signaling through a variety of downstream effector proteins. Intrinsic GTPase activity returns the α subunit to a GDP-bound state, a process accelerated by regulators of G protein signaling (RGS proteins), restoring the inactive αβγ...

This is a preview of subscription content, log in to check access.

References

  1. Ackerman SD, Garcia C, Piao X, Gutmann DH, Monk KR. The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Gα12/13 and RhoA. Nat Commun. 2015;6–6122.Google Scholar
  2. Boucher I, Yu W, Beaudry S, Negoro H, Tran M, Pollak MR, Henderson JM, Denker BM. Gα12 activation in podocytes leads to cumulative changes in glomerular collagen expression, proteinuria and glomerulosclerosis. Lab Investig. 2012;92:662–75.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Buhl AM, Johnson NL, Dhanasekaran N, Johnson GL. Gα12 and Gα13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly. J Biol Chem. 1995;270:24631–4.PubMedCrossRefGoogle Scholar
  4. Cavin S, Maric D, Diviani D. A-kinase anchoring protein-Lbc promotes pro-fibrotic signaling in cardiac fibroblasts. Biochim Biophys Acta. 2014;1843:335–45.PubMedCrossRefGoogle Scholar
  5. Chan AM, Fleming TP, McGovern ES, Chedid M, Miki T, Aaronson SA. Expression cDNA cloning of a transforming gene encoding the wild-type Gα12 gene product. Mol Cell Biol. 1993;13:762–8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Chan P, Thomas CJ, Sprang SR, Tall GG. Molecular chaperoning function of Ric-8 is to fold nascent heterotrimeric G protein α subunits. Proc Nat Acad Sci USA. 2013;110:3794–9.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chen Z, Singer WD, Sternweis PC, Sprang SR. Structure of the p115RhoGEF rgRGS domain–Gα13/α1chimera complex suggests convergent evolution of a GTPase activator. Nat Struct Mol Biol. 2005;12:191–7.PubMedCrossRefGoogle Scholar
  8. Chia CY, Kumari U, Casey PJ. Breast cancer cell invasion mediated by Gα12 signaling involves expression of interleukins-6 and -8, and matrix metalloproteinase-2. J Mol Signal. 2014;9:6.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cho MK, Kim WD, Ki SH, Hwang JI, Choi S, Lee CH, Kim SG. Role of Gα12 and Gα13 as novel switches for the activity of Nrf2, a key antioxidative transcription factor. Mol Cell Biol. 2007;27:6195–208.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chow CR, Ebine K, Knab LM, Bentrem DJ, Kumar K, Munshi HG. Cancer cell invasion in three-dimensional collagen is regulated differentially by Gα13 protein and discoidin domain receptor 1-Par3 protein signaling. J Biol Chem. 2016;291:1605–18.PubMedCrossRefGoogle Scholar
  11. Collins LR, Minden A, Karin M, Brown JH. Gα12 stimulates c-Jun NH2-terminal kinase through the small G proteins Ras and Rac. J Biol Chem. 1996;271:17349–53.PubMedCrossRefGoogle Scholar
  12. Gan X, Wang J, Wang C, Sommer E, Kozasa T, Srinivasula S, Alessi D, Offermanns S, Simon MI, Wu D. PRR5L degradation promotes mTORC2-mediated PKC-δ phosphorylation and cell migration downstream of Gα12. Nat Cell Biol. 2012;14:686–96.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Gohla A, Harhammer R, Schultz G. The G-protein G13 but not G12 mediates signaling from lysophosphatidic acid receptor via epidermal growth factor receptor to Rho. J Biol Chem. 1998;273:4653–9.PubMedCrossRefGoogle Scholar
  14. Gomathinayagam R, Jayaraman M, Ha JH, Varadarajalu L, Dhanasekaran DN. Hax-1 is required for Rac1-Cortactin interaction and ovarian carcinoma cell migration. Genes Cancer. 2014;5:84–99.PubMedPubMedCentralGoogle Scholar
  15. Hall A. Rho family GTPases. Biochem Soc Trans. 2012;40:1378–82.PubMedCrossRefGoogle Scholar
  16. Hart MJ, Jiang X, Kozasa T, Roscoe W, Singer WD, Gilman AG, Sternweis PC, Bollag G. Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Gα13. Science. 1998;280:2112–4.PubMedCrossRefGoogle Scholar
  17. Hashimoto S, Mikami S, Sugino H, Yoshikawa A, Hashimoto A, Onodera Y, Furukawa S, Handa H, Oikawa T, Okada Y, Oya M, Sabe H. Lysophosphatidic acid activates Arf6 to promote the mesenchymal malignancy of renal cancer. Nat Commun. 2016;7:10656.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Hewavitharana T, Wedegaertner PB. Non-canonical signaling and localizations of heterotrimeric G proteins. Cell Signal. 2012;24:25–34.PubMedCrossRefGoogle Scholar
  19. Jiang LI, Wang JE, Sternweis PC. Regions on adenylyl cyclase VII required for selective regulation by the G13 pathway. Mol Pharmacol. 2013;83:587–93.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Jones TLZ, Gutkind JS. Gα12 requires acylation for its transforming activity. Biochemistry. 1998;37:3196–202.PubMedCrossRefGoogle Scholar
  21. Juneja J, Casey PJ. Role of G12 proteins in oncogenesis and metastasis. British J Pharmacol. 2009;158:32–40.CrossRefGoogle Scholar
  22. Juneja J, Cushman I, Casey PJ. G12 signaling through c-Jun NH2-terminal kinase promotes breast cancer cell invasion. PLoS ONE. 2011;6(11):e26085.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Kashef K, Radhakrishnan R, Lee CM, Reddy EP, Dhanasekaran DN. Neoplastic transformation induced by the gep oncogenes involves the scaffold protein JNK-interacting leucine zipper protein. Neoplasia. 2011;13:358–64.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Kelly P, Casey PJ, Meigs TE. Biologic functions of the G12 subfamily of heterotrimeric G proteins: growth, migration, and metastasis. Biochemistry. 2007;46:6677–87.PubMedCrossRefGoogle Scholar
  25. Kong T, Xu D, Yu W, Takakura A, Boucher I, Tran M, Kreidberg JA, Shah J, Zhou J, Denker BM. Gα12 inhibits α2β1 integrin-mediated Madin-Darby canine kidney cell attachment and migration on collagen-I and blocks tubulogenesis. Mol Biol Cell. 2009;20:4596–610.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Kozasa T, Gilman AG. Purification of recombinant G proteins from Sf9 cells by hexahistidine tagging of associated subunits: characterization of α12 and inhibition of adenylyl cyclase by αz. J Biol Chem. 1995;270:1734–41.PubMedCrossRefGoogle Scholar
  27. Kozasa T, Hajicek N, Chow CR, Suzuki N. Signalling mechanisms of RhoGTPase regulation by the heterotrimeric G proteins G12 and G13. J Biochem. 2011;150:357–69.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Kreutz B, Yau DM, Nance MR, Tanabe S, Tesmer JJG, Kozasa T. A new approach to producing functional Gα subunits yields the activated and deactivated structures of Gα12/13 proteins. Biochemistry. 2006;45:167–74.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Krishnan A, Mustafa A, Almen MS, Fredriksson R, Williams MJ, Schioth HB. Evolutionary hierarchy of vertebrate-like heterotrimeric G protein families. Mol Phylogenet Evol. 2015;91:27–40.PubMedCrossRefGoogle Scholar
  30. Lin X, Voyno-Yasenetskaya TA, Hooley R, Lin CY, Orlowski J, Barber DL. Gα12 differentially regulates Na+-H+ exchanger isoforms. J Biol Chem. 1996;271:22604–10.PubMedCrossRefGoogle Scholar
  31. Lin F, Chen S, Sepich DS, Panizzi JR, Clendenon SG, Marrs JA, Hamm HE, Solnica-Krezel L. Gα12/13 regulate epiboly by inhibiting E-cadherin activity and modulating the actin cytoskeleton. J Cell Biol. 2009;184:909–21.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Mack CP. Signaling mechanisms that regulate smooth muscle cell differentiation. Arterioscler Thromb Vasc Biol. 2011;31:1495–505.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Masia-Balague M, Izquierdo I, Garrido G, Cordomi A, Perez-Benito L, Miller NLG, Schlaepfer DD, Gigoux V, Aragay AM. Gastrin-stimulated Gα13 activation of Rgnef protein (ArhGEF28) in DLD-1 colon carcinoma cells. J Biol Chem. 2015;290:15197–209.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Mo JS, Yu FX, Gong R, Brown JH, Guan KL. Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes Dev. 2012;26:2138–43.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Montgomery ER, Temple BRS, Peters KA, Tolbert CE, Booker BK, Martin JW, Hamilton TP, Tagliatela AC, Smolski WC, Rogers SL, Jones AM, Meigs TE. Gα12 structural determinants of Hsp90 interaction are necessary for serum response element-mediated transcriptional activation. Mol Pharmacol. 2014;85:586–97.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Muppidi JR, Lu E, Cyster JG. The G protein-couled receptor P2RY8 and follicular dendritic cells promote germinal center confinement of B cells, whereas S1PR3 can contribute to their dissemination. J Exp Med. 2015;212:2213–22.PubMedPubMedCentralCrossRefGoogle Scholar
  37. O’Hayre M, Vazquez-Prado J, Kufareva I, Stawiski EW, Handel TM, Seshagiri S, Gutkind JS. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat Rev Cancer. 2013;13:412–24.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Orth JHC, Fester I, Siegert P, Weise M, Lanner U, Kamitani S, Tachibana T, Wilson BA, Schlosser A, Horiguchi Y, Aktories K. Substrate specificity of Pasteurella multocida toxin for α subunits of heterotrimeric G proteins. FASEB J. 2013;27:832–42.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Parks S, Wieschaus E. The Drosophila gastrulation gene concertina encodes a Gα-like protein. Cell. 1991;64:447–58.PubMedCrossRefGoogle Scholar
  40. Radhakrishnan R, Ha JH, Dhanasekaran DN. Mitogenic signaling by the gep oncogene involves the upregulation of S-phase kinase-associated protein 2. Genes Cancer. 2010;1:1033–43.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Rasheed SAK, Teo CR, Beillard EJ, Voorhoeve PM, Casey PJ. MicroRNA-182 and microRNA-200a control G-protein subunit α-13 (GNA13) expression and cell invasion synergistically in prostate cancer cells. J Biol Chem. 2013;288:7986–95.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Riobo NA, Manning DR. Receptors coupled to heterotrimeric G proteins of the G12 family. Trends Pharmacol Sci. 2005;26:146–54.PubMedCrossRefGoogle Scholar
  43. Shan D, Chen L, Wang D, Tan YC, Gu JL, Huang XY. The G protein Gα13 is required for growth factor-induced cell migration. Dev Cell. 2006;10:707–18.PubMedCrossRefGoogle Scholar
  44. Shen B, Zhao X, O’Brien KA, Stojanovic-Terpo A, Delaney MK, Kim K, Cho J, Lam SCT, Du X. A directional switch of integrin signalling and a new anti-thrombotic strategy. Nature. 2013;503:131–5.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Singer WD, Miller RT, Sternweis PC. Purification and characterization of the α subunit of G13. J Biol Chem. 1994;269:19796–802.PubMedGoogle Scholar
  46. Strathmann MP, Simon MI. Gα12 and Gα13 subunits define a fourth class of G protein α subunits. Proc Natl Acad Sci USA. 1991;88:5582–6.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Suzuki N, Hajicek N, Kozasa T. Regulation and physiological functions of G12/13-mediated signaling pathways. Neurosignals. 2009;17:55–70.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Worzfeld T, Wettschureck N, Offermanns S. G12/G13-mediated signaling in mammalian physiology and disease. Trends Pharmacol Sci. 2008;29:582–9.PubMedCrossRefGoogle Scholar
  49. Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A, Kelly K, Takuwa Y, Sugimoto N, Mitchison T, Bourne HR. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell. 2003;114:201–14.PubMedCrossRefGoogle Scholar
  50. Yang YM, Lee WH, Lee CG, An J, Kim ES, Kim SH, Lee SK, Lee CH, Dhanasekaran DN, Moon A, Hwang S, Lee SJ, Park JW, Kim KM, Kim SG. Gα12 gep oncogene deregulation of p53-responsive microRNAs promotes epithelial-mesenchymal transition of hepatocellular carcinoma. Oncogene. 2015;34:2910–21.PubMedCrossRefGoogle Scholar
  51. Yau DM, Yokoyama N, Goshima Y, Siddiqui ZK, Siddiqui SS, Kozasa T. Identification and molecular characterization of the Gα12-Rho guanine nucleotide exchange factor pathway in Caenorhabditis elegans. Proc Natl Acad Sci USA. 2003;100:14748–53.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Yu OM, Brown JH. G protein-coupled receptor and RhoA-stimulated transcriptional responses: link to inflammation, differentiation, and cell proliferation. Mol Pharmacol. 2015;88:171–80.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of North Carolina AshevilleAshevilleUSA
  2. 2.Group of Mitochondrial Dysfunction and DiseasesInternational Clinical Research Center, St. Anne’s University Hospital BrnoBrnoCzech Republic