Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Dana Onica
  • David W. LitchfieldEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_581


Historical Background

Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIn1) is a phosphorylation-dependent peptidyl-prolyl isomerase that was first isolated by a yeast two-hybrid screen designed to identify human proteins which interact with the product of the “never in mitosis” gene A (NIMA) (Lu et al. 1996). Sequence analysis revealed that human Pin1 exhibits approximately 45% amino acid sequence similarity with the product of the ESS1 gene that was previously identified as essential for growth in the budding yeast Saccharomyces cerevisiae (Hanes et al. 1989). It has subsequently been found that Pin1-like proteins are highly conserved and found in both eukaryotes and prokaryotes (Maruyama et al. 2004). While it initially implicated as a regulator of mitosis, it is evident that Pin1 has roles in a number of biological processes.

Pin1 is...
This is a preview of subscription content, log in to check access.


  1. Bailey ML, Shilton BH, Brandl CJ, Litchfield DW. The dual histidine motif in the active site of Pin1 has a structural rather than catalytic role. Biochemistry. 2008;47:11481–9.CrossRefPubMedGoogle Scholar
  2. Behrsin CD, Bailey ML, Bateman KS, Hamilton KS, Wahl LM, Brandl CJ, Shilton BH, Litchfield DW. Functionally important residues in the peptidyl-prolyl isomerase Pin1 revealed by unigenic evolution. J Mol Biol. 2007;265:1143–62.CrossRefGoogle Scholar
  3. Chen CH, Li W, Sultana R, You MH, Kondo A, Shahpasand K, Kim BM, Luo ML, Nechama M, Lin YM, Yao Y, Lee TH, Zhou XZ, Swomley AM, Butterfield AD, Zhang Y, Lu KP. Pin1 cysteine-113 oxidation inhibits its catalytic activity and cellular functions in Alzheimer’s disease. Neurobiol Dis. 2015;76:13–23.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Dong L, Marakovits J, Hou X, Guo C, Greasley S, Dagostino E, Ferre R, Johnson MC, Kraynov E, Thomson J, Pathak V, Murray BW. Structure-based design of novel Pin1 inhibitors (II). Bioorg Med Chem Lett. 2010;20:2210–4.CrossRefPubMedGoogle Scholar
  5. Driver JA, Zhou XZ, Lu KP. Pin1 dysregulation helps to explain the inverse association between cancer and Alzheimer’s disease. Biochim Biophys Acta. 2015;1850:2069–76.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Duncan KE, Dempsey BR, Killip LE, Adams J, Bailey ML, Lajoie GA, Litchfield DW, Brandl CJ, Shaw GS, Shilton BH. Discovery and characterization of a nonphosphorylated cyclic peptide inhibitor of the peptidylprolyl isomerase, Pin1. J Med Chem. 2011;54:3854–65.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Esnault S, Shen ZJ, Malter JS. Pinning down signaling in the immune system: the role of the peptidyl-prolyl isomerase Pin1 in immune cell function. Crit Rev Immunol. 2008;28:45–60.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Gothel SF, Marahiel MA. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci. 1999;55:423–36.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Hanes SD, Shank PR, Bostian KA. Sequence and mutational analysis of ESS1, a gene essential for growth in Saccharomyces cerevisiae. Yeast. 1989;5:55–72.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2014;43:D512–20.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Innes BT, Sowole MA, Gyenis L, Dubinsky M, Konermann L, Litchfield DW, Brandl CJ, Shilton BH. Peroxide-mediated oxidation and inhibition of the peptidyl-prolyl isomerase Pin1. Biochim Biophys Acta. 2015;1852:905–12.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Lee TH, Tun-Kyi A, Shi R, Lim J, Soohoo C, Finn G, Balastik M, Pastorino L, Wulf G, Zhou XZ, Lu KP. Essential role of Pin1 in the regulation of TRF1 stability and telomere maintenance. Nat Cell Biol. 2009;11:97–105.CrossRefPubMedGoogle Scholar
  13. Li Z, Li H, Devasahayam G, Gemmill T, Chaturvedi V, Hanes SD, Van Roey P. The structure of the Candida albicans Ess1 prolyl isomerase reveals a well-ordered linker that restricts domain mobility. Biochemistry. 2005;44:6180–9.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Lippens G, Landrieu I, Smet C. Molecular mechanisms of the phosphor-dependent prolyl cis/trans isomerase Pin1. FEBS J. 2007;274:5211–22.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Litchfield DW, Shilton BH, Brandl CJ, Gyenis L. Pin1: intimate involvement with the regulatory kinase networks in the global phosphorylation landscape. Biochim Biophys Acta. 2015;1850:2077–86.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Liu T, Liu Y, Kao HY, Pei D. Membrane permeable cyclic peptidyl inhibitors against human peptidylprolyl isomerase Pin1. J Med Chem. 2010;53:2494–501.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Lu KP, Zhou XZ. The prolyl isomerase Pin1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol. 2007;8:904–16.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Lu KP, Hanes SD, Hunter T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature. 1996;380:544–7.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Lu P-J, Zhou XZ, Shen M, Lu KP. Functions of WW domains as phosphoserine- or phosphothreonine-binding modules. Science. 1999;283:1325–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Lu KP, Liou YC, Zhou XZ. Pinning down proline-directed phosphorylation signalling. Trends Cell Biol. 2002;12:164–72.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Lu KP, Suizu F, Zhou XZ, Finn G, Lam P, Wulf G. Targeting carcinogenesis: a role for the prolyl isomerase Pin1? Mol Carcinog. 2006;45:397–402.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Lu KP, Finn G, Lee TH, Nicholson LK. Prolyl cis-trans isomerisation as a molecular timer. Nat Chem Biol. 2007;3:619–29.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Maruyama T, Suzuki R, Furutani M. Archaeal peptidyl prolyl cis-trans isomerases (PPIases) update 2004. Front Biosci. 2004;9:1680–720.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Nakamura K, Greenwood A, Binder L, Bigio EH, Denial S, Nicholson L, Zhou XZ, Lu KP. Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer’s disease. Cell. 2012;149:232–44.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Potter A, Oldfield V, Nunns C, Fromont C, Ray S, Northfield CJ, Bryant CJ, Scrace SF, Robinson D, Matossova N, Baker L, Dokurno P, Surgenor AE, Davis B, Richardson CM, Murray JB, Moore JD. Discovery of cell-active phenyl-imidazole Pin1 inhibitors by structure-guided fragment evolution. Bioorg Med Chem Lett. 2010;20:6483–8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Ranganathan R, Lu KP, Hunter T, Noel JP. Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell. 1997;89:875–86.CrossRefPubMedGoogle Scholar
  27. Rustighi A, Zannini A, Campaner E, Ciani Y, Piazza S, Del Sal G. PIN1 in breast development and cancer: a clinical perspective. Cell Death Differ. 2017;24:200–11.CrossRefPubMedGoogle Scholar
  28. Ryo A, Liou YC, Wulf G, Nakamura M, Lee SW, Lu KP. Pin1 is an E2F target gene essential for Neu/Ras-induced transformation of mammary epithelial cells. Mol Cell Biol. 2002;22:5281–95.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Stukenberg PT, Kirschner MW. Pin1 acts catalytically to promote a conformational change in Cdc25. Cell. 2001;7:1071–83.Google Scholar
  30. Suizu F, Ryo A, Wulf G, Lim J, Lu KP. Pin1 regulates centrosome duplication andoncogenesis. Mol Cell Biol. 2006;26:1463–79.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Markesbery WR, Zhou XZ, Lu KP, Butterfield DA. Oxidative modification and down-regulation of Pin1 in Alzheimer’s disease hippocampus: a redox proteomics analysis. Neurobiol Aging. 2006;27:915–25.Google Scholar
  32. Takahashi K, Uchida C, Shin RW, Shimazaki K, Uchida T. Prolyl isomerase, Pin1: new findings of post-translational modifications and physiological substrates in cancer, asthma and Alzheimer’s disease. Cell Mol Life Sci. 2008;65:359–75.CrossRefPubMedGoogle Scholar
  33. Wang XJ, Etzkorn FA. Peptidyl-prolyl isomerase inhibitors. Biopolymers. 2006;84:125–46.CrossRefPubMedGoogle Scholar
  34. Wulf G, Ryo A, Liou YC, Lu KP. The prolyl isomerase Pin1 in breast development and cancer. Breast Cancer Res. 2003;5:76–82.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Xu YX, Manley JL. The prolyl isomerase Pin1 functions in mitotic chromosome condensation. Mol Cell. 2007;26:287–300.CrossRefPubMedGoogle Scholar
  36. Yaffe MB, Schutkowski M, Shen M, Zhou XZ, Stukenberg PT, Rahfeld J-U, Xu J, Kuang J, Kirschner MW, Fischer G, Cantley LC, Lu KP. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science. 1997;278:1957–60.CrossRefPubMedGoogle Scholar
  37. Yeh ES, Means AR. Pin1, the cell cycle and cancer. Nat Rev Cancer. 2007;7:381–8.CrossRefPubMedGoogle Scholar
  38. Zhou XZ, Lu KP. The isomerase PIN1 controls numerous cancer-driving pathways and is a unique drug target. Nat Rev Cancer. 2016;16:463–78.CrossRefPubMedGoogle Scholar
  39. Zhou XZ, Lu PJ, Wulf G, Lu KP. Phosphorylation-dependent prolyl isomerisation: a novel signalling regulatory mechanism. Cell Mol Life Sci. 1999;56:788–806.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of BiochemistrySchulich School of Medicine and Dentistry, The University of Western OntarioLondonCanada
  2. 2.Department of OncologySchulich School of Medicine and Dentistry, The University of Western OntarioLondonCanada