Skip to main content

Mek3

  • Reference work entry
  • First Online:
  • 57 Accesses

Synonyms

Licorne (lic); MAP kinase kinase 3; Map2k3; MAPK Erk kinase 3; MAPKK3; Mitogen activated protein kinase kinase 3; MKK3; mMMK3b; Mpk3; p38MAPKK; Prkmk3; Protein kinase, mitogen-activated, kinase 3

Historical Background

Polymyxin B sensitivity (PBS) 2, a yeast homolog of mitogen-activated protein kinase kinase 3 (Mek3), was originally cloned (in 1987) as a gene that conferred polymyxin B resistance to yeast cells (Boguslawski and Polazzi 1987). The amino acid sequence of the PBS2 gene product showed strong homology to the serine/threonine protein kinase family (Boguslawski and Polazzi 1987). In 1993, it was shown that PBS2 and its downstream HOG1 genes, which code for a Mek3 homologue and a p38 mitogen-activated protein kinase (MAPK) homologue, respectively, are necessary for yeast cells to grow at high osmolarity (Brewster et al. 1993). Two years after that study, Mek3 was first amplified by degenerative PCR as a human homolog of yeast PBS2, and overexpression of its gene...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Boguslawski G, Polazzi JO. Complete nucleotide sequence of a gene conferring polymyxin B resistance on yeast: similarity of the predicted polypeptide to protein kinases. Proc Natl Acad Sci USA. 1987;84:5848–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC. An osmosensing signal transduction pathway in yeast. Science. 1993;259:1760–3.

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling. Biochem J. 2010;429:403–17.

    Article  CAS  PubMed  Google Scholar 

  • Dang A, Frost JA, Cobb MH. The MEK1 proline-rich insert is required for efficient activation of the mitogen-activated protein kinases ERK1 and ERK2 in mammalian cells. J Biol Chem. 1998;273:19909–13.

    Article  CAS  PubMed  Google Scholar 

  • Derijard B, Raingeaud J, Barrett T, Wu IH, Han J, Ulevitch RJ, Davis RJ. Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science. 1995;267:682–5.

    Article  CAS  PubMed  Google Scholar 

  • Edlund S, Lee SY, Grimsby S, Zhang S, Aspenstrom P, Heldin CH, Landstrom M. Interaction between Smad7 and beta-catenin: importance for transforming growth factor beta-induced apoptosis. Mol Cell Biol. 2005;25:1475–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Enslen H, Brancho DM, Davis RJ. Molecular determinants that mediate selective activation of p38 MAP kinase isoforms. EMBO J. 2000;19:1301–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fukuda K, Tesch GH, Yap FY, Forbes JM, Flavell RA, Davis RJ, Nikolic-Paterson DJ. MKK3 signalling plays an essential role in leukocyte-mediated pancreatic injury in the multiple low-dose streptozotocin model. Lab Investig. 2008;88:398–407.

    Article  CAS  PubMed  Google Scholar 

  • Greenblatt MB, Shim JH, Zou W, Sitara D, Schweitzer M, Hu D, Lotinun S, Sano Y, Baron R, Park JM, et al. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest. 2010;120:2457–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988;241:42–52.

    Article  CAS  PubMed  Google Scholar 

  • Hitti E, Iakovleva T, Brook M, Deppenmeier S, Gruber AD, Radzioch D, Clark AR, Blackshear PJ, Kotlyarov A, Gaestel M. Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol Cell Biol. 2006;26:2399–407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inoue T, Boyle DL, Corr M, Hammaker D, Davis RJ, Flavell RA, Firestein GS. Mitogen-activated protein kinase kinase 3 is a pivotal pathway regulating p38 activation in inflammatory arthritis. Proc Natl Acad Sci USA. 2006;103:5484–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin K, Lim S, Mercer SE, Friedman E. The survival kinase Mirk/dyrk1B is activated through Rac1-MKK3 signaling. J Biol Chem. 2005;280:42097–105.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Nagata S, Iwasaki T, Yanagihara K, Saitoh I, Karouji Y, Ihara S, Fukui Y. Dedifferentiation of adenocarcinomas by activation of phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA. 1999;96:4874–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Linares JF, Duran A, Reina-Campos M, Aza-Blanc P, Campos A, Moscat J, Diaz-Meco MT. Amino acid activation of mTORC1 by a PB1-domain-driven kinase complex cascade. Cell Rep. 2015;12:1339–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma FY, Tesch GH, Flavell RA, Davis RJ, Nikolic-Paterson DJ. MKK3-p38 signaling promotes apoptosis and the early inflammatory response in the obstructed mouse kidney. Am J Physiol Ren Physiol. 2007;293:F1556–63.

    Article  CAS  Google Scholar 

  • Mukherjee S, Keitany G, Li Y, Wang Y, Ball HL, Goldsmith EJ, Orth K. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science. 2006;312:1211–4.

    Article  CAS  PubMed  Google Scholar 

  • Prickett TD, Brautigan DL. Cytokine activation of p38 MAPK and apoptosis is opposed by alpha-4 targeting of PP2A for site-specific dephosphorylation of MEK3. Mol Cell Biol. 2007;27:4217–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stein B, Brady H, Yang MX, Young DB, Barbosa MS. Cloning and characterization of MEK6, a novel member of the mitogen-activated protein kinase kinase cascade. J Biol Chem. 1996;271:11427–33.

    Article  CAS  PubMed  Google Scholar 

  • Yasuda S, Tanaka H, Sugiura H, Okamura K, Sakaguchi T, Tran U, Takemiya T, Mizoguchi A, Yagita Y, Sakurai T, et al. Activity-induced protocadherin arcadlin regulates dendritic spine number by triggering N-cadherin endocytosis via TAO2beta and p38 MAP kinases. Neuron. 2007;56:456–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yasuda S, Sugiura H, Yamagata K. Mek3. UCSD-Nature Molecule Pages. 2009. https://doi.org/10.1038/mp.a001507.01

Download references

Acknowledgments

This work was partly supported by KAKENHIs (20591426 to SY, 21500332 to HS, and 20300135 to KY) and the Naito Foundation (to KY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanato Yamagata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yasuda, S., Sugiura, H., Yamagata, K. (2018). Mek3. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_574

Download citation

Publish with us

Policies and ethics