Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Michael E. Reschen
  • Christopher A. O’CallaghanEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_572


Historical Background

CLEC5A is a type 2 transmembrane receptor originally identified by its ability to stabilize DAP (DNAX associating protein)-12 at the cell surface in myeloid cells (Bakker et al. 1999). It is emerging as a key component of the innate immune system; it activates macrophages, regulates osteoclastogenesis, and plays a role in inflammatory diseases including dengue virus-induced lethality, Japanese encephalitis-associated neuro-inflammation, and autoimmune arthritis (Bakker et al. 1999; Chen et al. 2008; Aoki et al. 2009; Joyce-Shaikh et al. 2010; Chen et al. 2012).


The predicted 161 amino acid extracellular sequence of CLEC5A contains a C-type lectin-like domain in the carboxy-terminal region (UniProt 2015). The N-terminal cytoplasmic tail is...

This is a preview of subscription content, log in to check access.


  1. Aoki N, Kimura S, Xing Z. Role of DAP12 in innate and adaptive immune responses. Curr Pharm Des. 2003;9:7–10.PubMedCrossRefGoogle Scholar
  2. Aoki N, Kimura Y, Kimura S, Nagato T, Azumi M, Kobayashi H, et al. Expression and functional role of MDL-1 (CLEC5A) in mouse myeloid lineage cells. J Leukoc Biol. 2009;85:508–17.  https://doi.org/10.1189/jlb.0508329.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aoki N, Zganiacz A, Margetts P, Xing Z. Differential regulation of DAP12 and molecules associated with DAP12 during host responses to mycobacterial infection. Infect Immun. 2004;72:2477–83.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bakker AB, Baker E, Sutherland GR, Phillips JH, Lanier LL. Myeloid DAP12-associating lectin (MDL)-1 is a cell surface receptor involved in the activation of myeloid cells. Proc Natl Acad Sci USA. 1999;96:9792–6.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bakker AB, Hoek RM, Cerwenka A, Blom B, Lucian L, McNeil T, et al. DAP12-deficient mice fail to develop autoimmunity due to impaired antigen priming. Immunity. 2000;13:345–53.  https://doi.org/10.1016/S1074-7613(00)00034-0.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Batliner J, Mancarelli MM, Jenal M, Reddy VA, Fey MF, Torbett BE, et al. CLEC5A (MDL-1) is a novel PU.1 transcriptional target during myeloid differentiation. Mol Immunol. 2011;48:714–9.  https://doi.org/10.1016/j.molimm.2010.10.016.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen DY, Yao L, Chen YM, Lin CC, Huang KC, Chen ST, et al. A potential role of myeloid DAP12-associating lectin (MDL)-1 in the regulation of inflammation in rheumatoid arthritis patients. PLoS One. 2014;9:e86105.  https://doi.org/10.1371/journal.pone.0086105.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen ST, Lin YL, Huang MT, Wu MF, Cheng SC, Lei HY, et al. CLEC5A is critical for dengue-virus-induced lethal disease. Nature. 2008;453:672–6.  https://doi.org/10.1038/nature07013.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen ST, Liu RS, Wu MF, Lin YL, Chen SY, Tan DT, et al. CLEC5A regulates Japanese encephalitis virus-induced neuroinflammation and lethality. PLoS Pathog. 2012;8:e1002655.  https://doi.org/10.1371/journal.ppat.1002655.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cheung R, Shen F, Phillips JH, McGeachy MJ, Cua DJ, Heyworth PG, et al. Activation of MDL-1 (CLEC5A) on immature myeloid cells triggers lethal shock in mice. J Clin Invest. 2011;121:4446–61.  https://doi.org/10.1172/JCI57682.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Consortium CAD, Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45:25–33.  https://doi.org/10.1038/ng.2480.CrossRefGoogle Scholar
  12. Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65.  https://doi.org/10.1038/nature11632.CrossRefGoogle Scholar
  13. Gingras MC, Lapillonne H, Margolin JF. TREM-1, MDL-1, and DAP12 expression is associated with a mature stage of myeloid development. Mol Immunol. 2002;38:817–24. doi:10.1016/S0161589002000044 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gonzalez-Dominguez E, Samaniego R, Flores-Sevilla JL, Campos-Campos SF, Gomez-Campos G, Salas A, et al. CD163L1 and CLEC5A discriminate subsets of human resident and inflammatory macrophages in vivo. J Leukoc Biol. 2015;98:453–66.  https://doi.org/10.1189/jlb.3HI1114-531R.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gupta N, Lomash V, Rao PV. Expression profile of Japanese encephalitis virus induced neuroinflammation and its implication in disease severity. J Clin Virol. 2010;49:4–10.  https://doi.org/10.1016/j.jcv.2010.06.009.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hruba P, Brabcova I, Gueler F, Krejcik Z, Stranecky V, Svobodova E, et al. Molecular diagnostics identifies risks for graft dysfunction despite borderline histologic changes. Kidney Int. 2015;88:785–95.  https://doi.org/10.1038/ki.2015.211.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Huang YL, Chen ST, Liu RS, Chen YH, Lin CY, Huang CH, et al. CLEC5A is critical for dengue virus-induced osteoclast activation and bone homeostasis. J Mol Med (Berl). 2016;  https://doi.org/10.1007/s00109-016-1409-0.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Inui M, Kikuchi Y, Aoki N, Endo S, Maeda T, Sugahara-Tobinai A, et al. Signal adaptor DAP10 associates with MDL-1 and triggers osteoclastogenesis in cooperation with DAP12. Proc Natl Acad Sci U S A. 2009;106:4816–21.  https://doi.org/10.1073/pnas.0900463106.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Joyce-Shaikh B, Bigler ME, Chao CC, Murphy EE, Blumenschein WM, Adamopoulos IE, et al. Myeloid DAP12-associating lectin (MDL)-1 regulates synovial inflammation and bone erosion associated with autoimmune arthritis. J Exp Med. 2010;207:579–89.  https://doi.org/10.1084/jem.20090516.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lanier LL. DAP10- and DAP12-associated receptors in innate immunity. Immunol Rev. 2009;227:150–60.  https://doi.org/10.1111/j.1600-065X.2008.00720.x.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol. 2008;9:495–502.  https://doi.org/10.1038/ni1581.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lanier LL, Corliss BC, Wu J, Leong C, Phillips JH. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature. 1998;391:703–7.  https://doi.org/10.1038/35642.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res. 2007;35:D26–31.  https://doi.org/10.1093/nar/gkl993.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Shin HS, Sarin R, Dixit N, Wu J, Gershwin E, Bowman EP, et al. Crosstalk among IL-23 and DNAX activating protein of 12 kDa-dependent pathways promotes osteoclastogenesis. J Immunol. 2015;194:316–24.  https://doi.org/10.4049/jimmunol.1401013.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Tybulewicz VL. Vav-family proteins in T-cell signalling. Curr Opin Immunol. 2005;17:267–74.  https://doi.org/10.1016/j.coi.2005.04.003.CrossRefPubMedPubMedCentralGoogle Scholar
  26. UniProt C. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204–12.  https://doi.org/10.1093/nar/gku989.CrossRefGoogle Scholar
  27. Upshaw JL, Arneson LN, Schoon RA, Dick CJ, Billadeau DD, Leibson PJ. NKG2D-mediated signaling requires a DAP10-bound Grb2-Vav1 intermediate and phosphatidylinositol-3-kinase in human natural killer cells. Nat Immunol. 2006;7:524–32.  https://doi.org/10.1038/ni1325.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Watson AA, Lebedev AA, Hall BA, Fenton-May AE, Vagin AA, Dejnirattisai W, et al. Structural flexibility of the macrophage dengue virus receptor CLEC5A: implications for ligand binding and signaling. J Biol Chem. 2011;286:24208–18.  https://doi.org/10.1074/jbc.M111.226142.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Watson AA, O’Callaghan CA. Crystallization and X-ray diffraction analysis of human CLEC5A (MDL-1), a dengue virus receptor. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010;66:29–31.  https://doi.org/10.1107/S1744309109047915.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Wortham BW, Eppert BL, Flury JL, Garcia SM, Donica WR, Osterburg A, et al. Cutting Edge: CLEC5A Mediates Macrophage Function and Chronic Obstructive Pulmonary Disease Pathologies. J Immunol. 2016;196:3227–31.  https://doi.org/10.4049/jimmunol.1500978.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Wu MF, Chen ST, Yang AH, Lin WW, Lin YL, Chen NJ, et al. CLEC5A is critical for dengue virus-induced inflammasome activation in human macrophages. Blood. 2013;121:95–106.  https://doi.org/10.1182/blood-2012-05-430090.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Xavier-Carvalho C, Gibson G, Brasil P, Ferreira RX, de Souza SR, Goncalves Cruz O, et al. Single nucleotide polymorphisms in candidate genes and dengue severity in children: a case-control, functional and meta-analysis study. Infect Genet Evol. 2013;20:197–205.  https://doi.org/10.1016/j.meegid.2013.08.017.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Yang YL, Chang WP, Hsu YW, Chen WC, Yu HR, Liang CD, et al. Lack of association between CLEC5A gene single-nucleotide polymorphisms and Kawasaki disease in Taiwanese children. J Biomed Biotechnol. 2012;2012:398628.  https://doi.org/10.1155/2012/398628.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Yim D, Jie HB, Sotiriadis J, Kim YS, Kim YB. Molecular cloning and expression pattern of porcine myeloid DAP12-associating lectin-1. Cell Immunol. 2001;209:42–8.  https://doi.org/10.1006/cimm.2001.1782.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zeller T, Wild P, Szymczak S, Rotival M, Schillert A, Castagne R, et al. Genetics and beyond--the transcriptome of human monocytes and disease susceptibility. PLoS One. 2010;5:e10693.  https://doi.org/10.1371/journal.pone.0010693.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zollbrecht C, Grassl M, Fenk S, Hocherl R, Hubauer U, Reinhard W, et al. Expression pattern in human macrophages dependent on 9p21.3 coronary artery disease risk locus. Atherosclerosis. 2013;227:244–9.  https://doi.org/10.1016/j.atherosclerosis.2012.12.030.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Michael E. Reschen
    • 1
  • Christopher A. O’Callaghan
    • 1
    Email author
  1. 1.Centre for Cellular and Molecular Physiology, Nuffield Department of Clinical MedicineUniversity of OxfordHeadington, OxfordUK