Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Michael E. Reschen
  • Anita R. Mistry
  • Christopher A. O’CallaghanEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_571


Historical Background

CLEC4E is a type 2 transmembrane receptor that is a member of the C-type lectin family of immune receptors and possesses a carbohydrate-recognition domain in its extracellular region. It was originally identified as a downstream transcriptional target of CCAAT/enhancer-binding protein beta in mouse macrophages and termed macrophage-inducible protein – Mincle (Matsumoto et al. 1999). The finding 10 years later that CLEC4E is a key receptor for the mycobacterial cell wall component, trehalose dimycolate, led to a surge in interest in the role of CLEC4E in controlling mycobacterial infection and in its ligands as potential vaccine adjuvants (Ishikawa et al. 2009). Furthermore, data has emerged implicating CLEC4E in the immune response to fungal infections...

This is a preview of subscription content, log in to check access.


  1. Arumugam TV, Manzanero S, Furtado M, Biggins PJ, Hsieh YH, Gelderblom M, et al. An atypical role for the myeloid receptor Mincle in central nervous system injury. J Cereb Blood Flow Metab. 2016;  https://doi.org/10.1177/0271678X16661201.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Behler F, Maus R, Bohling J, Knippenberg S, Kirchhof G, Nagata M, et al. Macrophage-inducible C-type lectin Mincle-expressing dendritic cells contribute to control of splenic Mycobacterium bovis BCG infection in mice. Infect Immun. 2015;83:184–96.  https://doi.org/10.1128/IAI.02500-14.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bowker N, Salie M, Schurz H, van Helden PD, Kinnear CJ, Hoal EG, et al. Polymorphisms in the pattern recognition receptor Mincle gene (CLEC4E) and association with tuberculosis. Lung. 2016;  https://doi.org/10.1007/s00408-016-9915-y.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bugarcic A, Hitchens K, Beckhouse AG, Wells CA, Ashman RB, Blanchard H. Human and mouse macrophage-inducible C-type lectin (Mincle) bind Candida albicans. Glycobiology. 2008;18:679–85.  https://doi.org/10.1093/glycob/cwn046.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Comelli EM, Head SR, Gilmartin T, Whisenant T, Haslam SM, North SJ, et al. A focused microarray approach to functional glycomics: transcriptional regulation of the glycome. Glycobiology. 2006;16:117–31.  https://doi.org/10.1093/glycob/cwj048.CrossRefPubMedPubMedCentralGoogle Scholar
  6. de Rivero Vaccari JC, Brand 3rd FJ, Berti AF, OF A, Bullock MR, de Rivero Vaccari JP. Mincle signaling in the innate immune response after traumatic brain injury. J Neurotrauma. 2015;32:228–36.  https://doi.org/10.1089/neu.2014.3436.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Drummond RA, Saijo S, Iwakura Y, Brown GD. The role of Syk/CARD9 coupled C-type lectins in antifungal immunity. Eur J Immunol. 2011;41:276–81.  https://doi.org/10.1002/eji.201041252.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Feinberg H, Jegouzo SA, Rowntree TJ, Guan Y, Brash MA, Taylor ME, et al. Mechanism for recognition of an unusual mycobacterial glycolipid by the macrophage receptor mincle. J Biol Chem. 2013;288:28457–65.  https://doi.org/10.1074/jbc.M113.497149.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Flornes LM, Bryceson YT, Spurkland A, Lorentzen JC, Dissen E, Fossum S. Identification of lectin-like receptors expressed by antigen presenting cells and neutrophils and their mapping to a novel gene complex. Immunogenetics. 2004;56:506–17.  https://doi.org/10.1007/s00251-004-0714-x.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Furukawa A, Kamishikiryo J, Mori D, Toyonaga K, Okabe Y, Toji A, et al. Structural analysis for glycolipid recognition by the C-type lectins Mincle and MCL. Proc Natl Acad Sci U S A. 2013;110:17438–43.  https://doi.org/10.1073/pnas.1312649110.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Greco SH, Mahmood SK, Vahle AK, Ochi A, Batel J, Deutsch M, et al. Mincle suppresses toll-like receptor 4 activation. J Leukoc Biol. 2016;100:185–94.  https://doi.org/10.1189/jlb.3A0515-185R.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Guo JP, Verdrengh M, Tarkowski A, Lange S, Jennische E, Lorentzen JC, et al. The rat antigen-presenting lectin-like receptor complex influences innate immunity and development of infectious diseases. Genes Immun. 2009;10:227–36.  https://doi.org/10.1038/gene.2009.4.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hattori Y, Morita D, Fujiwara N, Mori D, Nakamura T, Harashima H, et al. Glycerol monomycolate is a novel ligand for the human, but not mouse macrophage inducible C-type lectin Mincle. J Biol Chem. 2014;289:15405–12.  https://doi.org/10.1074/jbc.M114.566489.CrossRefPubMedPubMedCentralGoogle Scholar
  14. He Y, Xu L, Li B, Guo ZN, Hu Q, Guo Z, et al. Macrophage-inducible C-type lectin/spleen tyrosine kinase signaling pathway contributes to neuroinflammation after subarachnoid hemorrhage in rats. Stroke. 2015;46:2277–86.  https://doi.org/10.1161/STROKEAHA.115.010088.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Heitmann L, Schoenen H, Ehlers S, Lang R, Holscher C. Mincle is not essential for controlling Mycobacterium tuberculosis infection. Immunobiology. 2013;218:506–16.  https://doi.org/10.1016/j.imbio.2012.06.005.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Huber A, Kallerup RS, Korsholm KS, Franzyk H, Lepenies B, Christensen D, et al. Trehalose diester glycolipids are superior to the monoesters in binding to Mincle, activation of macrophages in vitro and adjuvant activity in vivo. Innate Immun. 2016;22:405–18.  https://doi.org/10.1177/1753425916651132.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Humphrey MB, Lanier LL, Nakamura MC. Role of ITAM-containing adapter proteins and their receptors in the immune system and bone. Immunol Rev. 2005;208:50–65.  https://doi.org/10.1111/j.0105-2896.2005.00325.x.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ichioka M, Suganami T, Tsuda N, Shirakawa I, Hirata Y, Satoh-Asahara N, et al. Increased expression of macrophage-inducible C-type lectin in adipose tissue of obese mice and humans. Diabetes. 2011;60:819–26.  https://doi.org/10.2337/db10-0864.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ishikawa E, Ishikawa T, Morita YS, Toyonaga K, Yamada H, Takeuchi O, et al. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med. 2009;206:2879–88.  https://doi.org/10.1084/jem.20091750.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ishikawa T, Itoh F, Yoshida S, Saijo S, Matsuzawa T, Gonoi T, et al. Identification of distinct ligands for the C-type lectin receptors Mincle and Dectin-2 in the pathogenic fungus Malassezia. Cell Host Microbe. 2013;13:477–88.  https://doi.org/10.1016/j.chom.2013.03.008.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jacobsen KM, Keiding UB, Clement LL, Schaffert ES, Rambaruth ND, Johannsen M, et al. The natural product brartemicin is a high affinity ligand for the carbohydrate-recognition domain of the macrophage receptor mincle. Medchemcommun. 2015;6:647–52.  https://doi.org/10.1039/c4md00512k.CrossRefGoogle Scholar
  22. Jegouzo SA, Harding EC, Acton O, Rex MJ, Fadden AJ, Taylor ME, et al. Defining the conformation of human mincle that interacts with mycobacterial trehalose dimycolate. Glycobiology. 2014;24:1291–300.  https://doi.org/10.1093/glycob/cwu072.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kataoka H, Kono H, Patel Z, Kimura Y, Rock KL. Evaluation of the contribution of multiple DAMPs and DAMP receptors in cell death-induced sterile inflammatory responses. PLoS One. 2014;9:e104741.  https://doi.org/10.1371/journal.pone.0104741.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kawata K, Illarionov P, Yang GX, Kenny TP, Zhang W, Tsuda M, et al. Mincle and human B cell function. J Autoimmun. 2012;39:315–22.  https://doi.org/10.1016/j.jaut.2012.04.004.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Khajoee V, Saito M, Takada H, Nomura A, Kusuhara K, Yoshida SI, et al. Novel roles of osteopontin and CXC chemokine ligand 7 in the defence against mycobacterial infection. Clin Exp Immunol. 2006;143:260–8.  https://doi.org/10.1111/j.1365-2249.2005.02985.x.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kiyotake R, Oh-Hora M, Ishikawa E, Miyamoto T, Ishibashi T, Yamasaki S. Human Mincle binds to cholesterol crystals and triggers innate immune responses. J Biol Chem. 2015;290:25322–32.  https://doi.org/10.1074/jbc.M115.645234.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kodar K, Eising S, Khan AA, Steiger S, Harper JL, Timmer MS, et al. The uptake of trehalose glycolipids by macrophages is independent of Mincle. ChemBioChem. 2015;16:683–93.  https://doi.org/10.1002/cbic.201402506.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lee WB, Kang JS, Yan JJ, Lee MS, Jeon BY, Cho SN, et al. Neutrophils promote Mycobacterial trehalose dimycolate-induced lung inflammation via the Mincle pathway. PLoS Pathog. 2012;8:e1002614.  https://doi.org/10.1371/journal.ppat.1002614.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lee WB, Kang JS, Choi WY, Zhang Q, Kim CH, Choi UY, et al. Mincle-mediated translational regulation is required for strong nitric oxide production and inflammation resolution. Nat Commun. 2016;7:11322.  https://doi.org/10.1038/ncomms11322.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lobato-Pascual A, Saether PC, Fossum S, Dissen E, Daws MR. Mincle, the receptor for mycobacterial cord factor, forms a functional receptor complex with MCL and FcepsilonRI-gamma. Eur J Immunol. 2013;43:3167–74.  https://doi.org/10.1002/eji.201343752.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Matsumoto M, Tanaka T, Kaisho T, Sanjo H, Copeland NG, Gilbert DJ, et al. A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages. J Immunol. 1999;163:5039–48.PubMedPubMedCentralGoogle Scholar
  32. McKimmie CS, Roy D, Forster T, Fazakerley JK. Innate immune response gene expression profiles of N9 microglia are pathogen-type specific. J Neuroimmunol. 2006;175:128–41.  https://doi.org/10.1016/j.jneuroim.2006.03.012.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Miyake Y, Masatsugu OH, Yamasaki S. C-type lectin receptor MCL facilitates Mincle expression and signaling through complex formation. J Immunol. 2015;194:5366–74.  https://doi.org/10.4049/jimmunol.1402429.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Nakamura N, Shimaoka Y, Tougan T, Onda H, Okuzaki D, Zhao H, et al. Isolation and expression profiling of genes upregulated in bone marrow-derived mononuclear cells of rheumatoid arthritis patients. DNA Res. 2006;13:169–83.  https://doi.org/10.1093/dnares/dsl006.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Patin EC, Willcocks S, Orr S, Ward TH, Lang R, Schaible UE. Mincle-mediated anti-inflammatory IL-10 response counter-regulates IL-12 in vitro. Innate Immun. 2016;22:181–5.  https://doi.org/10.1177/1753425916636671.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rabes A, Zimmermann S, Reppe K, Lang R, Seeberger PH, Suttorp N, et al. The C-type lectin receptor Mincle binds to Streptococcus pneumoniae but plays a limited role in the anti-pneumococcal innate immune response. PLoS One. 2015;10:e0117022.  https://doi.org/10.1371/journal.pone.0117022.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Rambaruth ND, Jegouzo SA, Marlor H, Taylor ME, Drickamer K. Mouse mincle: characterization as a model for human mincle and evolutionary implications. Molecules. 2015;20:6670–82.  https://doi.org/10.3390/molecules20046670.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ribbing C, Engblom C, Lappalainen J, Lindstedt K, Kovanen PT, Karlsson MA, et al. Mast cells generated from patients with atopic eczema have enhanced levels of granule mediators and an impaired Dectin-1 expression. Allergy. 2011;66:110–9.  https://doi.org/10.1111/j.1398-9995.2010.02437.x.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Richardson MB, Torigoe S, Yamasaki S, Williams SJ. Mycobacterium tuberculosis beta-gentiobiosyl diacylglycerides signal through the pattern recognition receptor Mincle: total synthesis and structure activity relationships. Chem Commun (Camb). 2015;51:15027–30.  https://doi.org/10.1039/c5cc04773k.CrossRefGoogle Scholar
  40. Rosseau S, Hocke A, Mollenkopf H, Schmeck B, Suttorp N, Kaufmann SH, et al. Comparative transcriptional profiling of the lung reveals shared and distinct features of Streptococcus pneumoniae and influenza A virus infection. Immunology. 2007;120:380–91.  https://doi.org/10.1111/j.1365-2567.2006.02514.x.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ryll R, Kumazawa Y, Yano I. Immunological properties of trehalose dimycolate (cord factor) and other mycolic acid-containing glycolipids – a review. Microbiol Immunol. 2001;45:801–11.PubMedCrossRefGoogle Scholar
  42. Saravanan C, Cao Z, Head SR, Panjwani N. Analysis of differential expression of glycosyltransferases in healing corneas by glycogene microarrays. Glycobiology. 2010;20:13–23.  https://doi.org/10.1093/glycob/cwp133.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Schoenen H, Bodendorfer B, Hitchens K, Manzanero S, Werninghaus K, Nimmerjahn F, et al. Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J Immunol. 2010;184:2756–60.  https://doi.org/10.4049/jimmunol.0904013.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Schoenen H, Huber A, Sonda N, Zimmermann S, Jantsch J, Lepenies B, et al. Differential control of Mincle-dependent cord factor recognition and macrophage responses by the transcription factors C/EBPbeta and HIF1alpha. J Immunol. 2014;193:3664–75.  https://doi.org/10.4049/jimmunol.1301593.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Seifert L, Werba G, Tiwari S, Giao Ly NN, Alothman S, Alqunaibit D, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature. 2016;532:245–9.  https://doi.org/10.1038/nature17403.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sharma A, Steichen AL, Jondle CN, Mishra BB, Sharma J. Protective role of Mincle in bacterial pneumonia by regulation of neutrophil mediated phagocytosis and extracellular trap formation. J Infect Dis. 2014;209:1837–46.  https://doi.org/10.1093/infdis/jit820.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Stocker BL, Khan AA, Chee SH, Kamena F, Timmer MS. On one leg: trehalose monoesters activate macrophages in a Mincle-dependant manner. Chem BiChem. 2014;15:382–8.  https://doi.org/10.1002/cbic.201300674.CrossRefGoogle Scholar
  48. Suzuki Y, Nakano Y, Mishiro K, Takagi T, Tsuruma K, Nakamura M, et al. Involvement of Mincle and Syk in the changes to innate immunity after ischemic stroke. Sci Report. 2013;3:3177.  https://doi.org/10.1038/srep03177.CrossRefGoogle Scholar
  49. Tamura T, Thotakura P, Tanaka TS, Ko MS, Ozato K. Identification of target genes and a unique cis element regulated by IRF-8 in developing macrophages. Blood. 2005;106:1938–47.  https://doi.org/10.1182/blood-2005-01-0080.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tanaka M, Ikeda K, Suganami T, Komiya C, Ochi K, Shirakawa I, et al. Macrophage-inducible C-type lectin underlies obesity-induced adipose tissue fibrosis. Nat Commun. 2014;5:4982.  https://doi.org/10.1038/ncomms5982.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Toyonaga K, Miyake Y, Yamasaki S. Characterization of the receptors for mycobacterial cord factor in Guinea pig. PLoS One. 2014;9:e88747.  https://doi.org/10.1371/journal.pone.0088747.CrossRefPubMedPubMedCentralGoogle Scholar
  52. van der Peet PL, Gunawan C, Torigoe S, Yamasaki S, Williams SJ. Corynomycolic acid-containing glycolipids signal through the pattern recognition receptor Mincle. Chem Commun (Camb). 2015;51:5100–3.  https://doi.org/10.1039/c5cc00085h.CrossRefGoogle Scholar
  53. Vijayan D, Radford KJ, Beckhouse AG, Ashman RB, Wells CA. Mincle polarizes human monocyte and neutrophil responses to Candida albicans. Immunol Cell Biol. 2012;90:889–95.  https://doi.org/10.1038/icb.2012.24.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wells CA, Salvage-Jones JA, Li X, Hitchens K, Butcher S, Murray RZ, et al. The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans. J Immunol. 2008;180:7404–13.PubMedCrossRefGoogle Scholar
  55. Wevers BA, Kaptein TM, Zijlstra-Willems EM, Theelen B, Boekhout T, Geijtenbeek TB, et al. Fungal engagement of the C-type lectin mincle suppresses dectin-1-induced antifungal immunity. Cell Host Microbe. 2014;15:494–505.  https://doi.org/10.1016/j.chom.2014.03.008.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Wuthrich M, Wang H, Li M, Lerksuthirat T, Hardison SE, Brown GD, et al. Fonsecaea pedrosoi-induced Th17-cell differentiation in mice is fostered by Dectin-2 and suppressed by Mincle recognition. Eur J Immunol. 2015;45:2542–52.  https://doi.org/10.1002/eji.201545591.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol. 2008;9:1179–88.  https://doi.org/10.1038/ni.1651.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yamasaki S, Matsumoto M, Takeuchi O, Matsuzawa T, Ishikawa E, Sakuma M, et al. C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc Natl Acad Sci U S A. 2009;106:1897–902.  https://doi.org/10.1073/pnas.0805177106.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zhao XQ, Zhu LL, Chang Q, Jiang C, You Y, Luo T, et al. C-type lectin receptor dectin-3 mediates trehalose 6,6′-dimycolate (TDM)-induced Mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-kappaB activation. J Biol Chem. 2014;289:30052–62.  https://doi.org/10.1074/jbc.M114.588574.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Michael E. Reschen
    • 1
  • Anita R. Mistry
    • 1
  • Christopher A. O’Callaghan
    • 1
    Email author
  1. 1.Centre for Cellular and Molecular Physiology, Nuffield Department of Clinical MedicineUniversity of OxfordHeadington, OxfordUK