Skip to main content

CD53

  • 45 Accesses

Synonyms

CD53 antigen; CD53 tetraspanin antigen; Cell surface glycoprotein CD53; Leukocyte surface antigen CD53; MOX44; Ox-44; OX44; Tetraspanin-25; Tspan-25; Tspan25; TSPAN25

Historical Background

CD53 is a member of the tetraspanin family of hydrophobic membrane-spanning proteins. Tetraspanins form microdomains on the cell surface that can interact with many different proteins implicated in signaling forming vesicles leading to endosome and exosome formation. CD53 has no known extracellular ligand. The specific function of CD53 has not yet been defined, but CD53 has been shown to modulate cell adhesion, migration, cell proliferation, and survival. Ligation of CD53 with antibodies protects cells from apoptosis; this effect is mediated by phosphorylation and activation of Akt, increased levels of Bcl-Xl, decreasing the amount of Bax, and reducing caspase activation. In mesangial cells, CD53 ligation stimulates the induction of DNA synthesis via the MEK-ERK pathway. CD53 ligation...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-67199-4_566
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   5,499.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-67199-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   7,499.99
Price excludes VAT (USA)
CD53, Fig. 1
CD53, Fig. 2

References

  • Andreu Z, Yanez-Mo M. Tetraspanins in extracellular vesicle formation and function. Front Immunol. 2014;5:442. https://doi.org/10.3389/fimmu.2014.00442.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Angelisova P, Vlcek C, Stefanova I, Lipoldova M, Horejsi V. The human leucocyte surface antigen CD53 is a protein structurally similar to the CD37 and MRC OX-44 antigens. Immunogenetics. 1990;32:281–5.

    PubMed  CrossRef  CAS  Google Scholar 

  • Angelisova P, Hilgert I, Horejsi V. Association of four antigens of the tetraspans family (CD37, CD53, TAPA-1, and R2/C33) with MHC class II glycoproteins. Immunogenetics. 1994;39:249–56.

    PubMed  CrossRef  CAS  Google Scholar 

  • Barrena S, Almeida J, Yunta M, Lopez A, Diaz-Mediavilla J, Orfao A, et al. Discrimination of biclonal B-cell chronic lymphoproliferative neoplasias by tetraspanin antigen expression. Leukemia. 2005a;19:1708–9. https://doi.org/10.1038/sj.leu.2403858.

    CrossRef  PubMed  CAS  Google Scholar 

  • Barrena S, Almeida J, Yunta M, Lopez A, Fernandez-Mosteirin N, Giralt M, et al. Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation. Leukemia. 2005b;19:1376–83. https://doi.org/10.1038/sj.leu.2403822.

    CrossRef  PubMed  CAS  Google Scholar 

  • Beinert T, Munzing S, Possinger K, Krombach F. Increased expression of the tetraspanins CD53 and CD63 on apoptotic human neutrophils. J Leukoc Biol. 2000;67:369–73.

    PubMed  CrossRef  CAS  Google Scholar 

  • Bosca L, Lazo PA. Induction of nitric oxide release by MRC OX-44 (anti-CD53) through a protein kinase C-dependent pathway in rat macrophages. J Exp Med. 1994;179:1119–26.

    PubMed  CrossRef  CAS  Google Scholar 

  • Boucheix C, Rubinstein E. Tetraspanins. Cell Mol Life Sci. 2001;58:1189–205.

    PubMed  CrossRef  CAS  Google Scholar 

  • Brackman D, Lund-Johansen F, Aarskog D. Expression of leukocyte differentiation antigens during the differentiation of HL-60 cells induced by 1,25-dihydroxyvitamin D3: comparison with the maturation of normal monocytic and granulocytic bone marrow cells. J Leukoc Biol. 1995;58:547–55.

    PubMed  CrossRef  CAS  Google Scholar 

  • Cao L, Yoshino T, Kawasaki N, Sakuma I, Takahashi K, Akagi T. Anti-CD53 monoclonal antibody induced LFA-1/ICAM-1-dependent and -independent lymphocyte homotypic cell aggregation. Immunobiology. 1997;197:70–81.

    PubMed  CrossRef  CAS  Google Scholar 

  • Charrin S, Manie S, Oualid M, Billard M, Boucheix C, Rubinstein E. Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett. 2002;516:139–44.

    PubMed  CrossRef  CAS  Google Scholar 

  • Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17:816–26. https://doi.org/10.1038/ncb3169.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Damjanovich S, Matko J, Matyus L, Szabo Jr G, Szollosi J, Pieri JC, et al. Supramolecular receptor structures in the plasma membrane of lymphocytes revealed by flow cytometric energy transfer, scanning force- and transmission electron-microscopic analyses. Cytometry. 1998;33:225–33.

    PubMed  CrossRef  CAS  Google Scholar 

  • Deneka M, Pelchen-Matthews A, Byland R, Ruiz-Mateos E, Marsh M. In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J Cell Biol. 2007;177:329–41.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Ferrer M, Yunta M, Lazo PA. Pattern of expression of tetraspanin antigen genes in Burkitt lymphoma cell lines. Clin Exp Immunol. 1998;113:346–52.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Hemler ME. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol. 2003;19:397–422.

    PubMed  CrossRef  CAS  Google Scholar 

  • Hemler ME. Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol. 2005;6:801–11.

    PubMed  CrossRef  CAS  Google Scholar 

  • Hemler ME. Tetraspanin proteins promote multiple cancer stages. Nat Rev Cancer. 2014;14:49–60.

    PubMed  CrossRef  CAS  Google Scholar 

  • Hernandez-Torres J, Yunta M, Lazo PA. Differential cooperation between regulatory sequences required for human CD53 gene expression. J Biol Chem. 2001;276:35405–13. https://doi.org/10.1074/jbc.M104723200.

    CrossRef  PubMed  CAS  Google Scholar 

  • Horejsi V, Vlcek C. Novel structurally distinct family of leucocyte surface glycoproteins including CD9, CD37, CD53 and CD63. FEBS Lett. 1991;288:1–4.

    PubMed  CrossRef  CAS  Google Scholar 

  • Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–35. https://doi.org/10.1038/nature15756.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Hou CY, Lin JH, Lin SJ, Kuo WC, Lin HT. Down-regulation of CD53 expression in Epinephelus coioides under LPS, poly (I:C), and cytokine stimulation. Fish Shellfish Immunol. 2016;51:143–52. https://doi.org/10.1016/j.fsi.2015.11.032.

    CrossRef  PubMed  CAS  Google Scholar 

  • Kyriakou D, Alexandrakis MG, Kyriakou ES, Liapi D, Kourelis TV, Mavromanolakis M, et al. Reduced CD43 expression on the neutrophils of MDS patients correlates with an activated phenotype of these cells. Int J Hematol. 2001;73:483–91.

    PubMed  CrossRef  CAS  Google Scholar 

  • Lazo PA. Functional implications of tetraspanin proteins in cancer biology. Cancer Sci. 2007;98:1666–77. https://doi.org/10.1111/j.1349-7006.2007.00584.x.

    CrossRef  PubMed  CAS  Google Scholar 

  • Lazo PA, Cuevas L, Gutierrez del Arroyo A, Orue E. Ligation of CD53/OX44, a tetraspan antigen, induces homotypic adhesion mediated by specific cell-cell interactions. Cell Immunol. 1997;178:132–40. https://doi.org/10.1006/cimm.1997.1139.

    CrossRef  PubMed  CAS  Google Scholar 

  • Lee H, Bae S, Jang J, Choi BW, Park CS, Park JS, et al. CD53, a suppressor of inflammatory cytokine production, is associated with population asthma risk via the functional promoter polymorphism -1560 C>T. Biochim Biophys Acta. 2013;1830:3011–8. https://doi.org/10.1016/j.bbagen.2012.12.030.

    CrossRef  PubMed  CAS  Google Scholar 

  • Maecker HT, Todd SC, Levy S. The tetraspanin superfamily: molecular facilitators. FASEB J. 1997;11:428–42.

    PubMed  CrossRef  CAS  Google Scholar 

  • Mannion BA, Berditchevski F, Kraeft SK, Chen LB, Hemler ME. Transmembrane-4 superfamily proteins CD81 (TAPA-1), CD82, CD63, and CD53 specifically associated with integrin alpha 4 beta 1 (CD49d/CD29). J Immunol. 1996;157:2039–47.

    PubMed  CAS  Google Scholar 

  • Mansson R, Lagergren A, Hansson F, Smith E, Sigvardsson M. The CD53 and CEACAM-1 genes are genetic targets for early B cell factor. Eur J Immunol. 2007;37:1365–76.

    PubMed  CrossRef  CAS  Google Scholar 

  • Mollinedo F, Fontan G, Barasoain I, Lazo PA. Recurrent infectious diseases in human CD53 deficiency. Clin Diagn Lab Immunol. 1997;4:229–31.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mollinedo F, Martin-Martin B, Gajate C, Lazo PA. Physiological activation of human neutrophils down-regulates CD53 cell surface antigen. J Leukoc Biol. 1998;63:699–706.

    PubMed  CrossRef  CAS  Google Scholar 

  • Nichols TC, Guthridge JM, Karp DR, Molina H, Fletcher DR, Holers VM. Gamma-glutamyl transpeptidase, an ecto-enzyme regulator of intracellular redox potential, is a component of TM4 signal transduction complexes. Eur J Immunol. 1998;28:4123–9.

    PubMed  CrossRef  CAS  Google Scholar 

  • Olweus J, Lund-Johansen F, Horejsi V. CD53, a protein with four membrane-spanning domains, mediates signal transduction in human monocytes and B cells. J Immunol. 1993;151:707–16.

    PubMed  CAS  Google Scholar 

  • Pedersen-Lane JH, Zurier RB, Lawrence DA. Analysis of the thiol status of peripheral blood leukocytes in rheumatoid arthritis patients. J Leukoc Biol. 2007;81:934–41. https://doi.org/10.1189/jlb.0806533.

    CrossRef  PubMed  CAS  Google Scholar 

  • Seigneuret M, Delaguillaumie A, Lagaudriere-Gesbert C, Conjeaud H. Structure of the tetraspanin main extracellular domain. A partially conserved fold with a structurally variable domain insertion. J Biol Chem. 2001;276:40055–64.

    PubMed  CrossRef  CAS  Google Scholar 

  • Stonehouse TJ, Woodhead VE, Herridge PS, Ashrafian H, George M, Chain BM, et al. Molecular characterization of U937-dependent T-cell co-stimulation. Immunology. 1999;96:35–47.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Szollosi J, Horejsi V, Bene L, Angelisova P, Damjanovich S. Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY. J Immunol. 1996;157:2939–46.

    PubMed  CAS  Google Scholar 

  • Tippett E, Cameron PU, Marsh M, Crowe SM. Characterization of tetraspanins CD9, CD53, CD63, and CD81 in monocytes and macrophages in HIV-1 infection. J Leukoc Biol. 2013;93:913–20. https://doi.org/10.1189/jlb.0812391.

    CrossRef  PubMed  CAS  Google Scholar 

  • Voehringer DW, Hirschberg DL, Xiao J, Lu Q, Roederer M, Lock CB, et al. Gene microarray identification of redox and mitochondrial elements that control resistance or sensitivity to apoptosis. Proc Natl Acad Sci USA. 2000;97:2680–5.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Yanez-Mo M, Barreiro O, Gordon-Alonso M, Sala-Valdes M, Sanchez-Madrid F. Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol. 2009;19:434–46. https://doi.org/10.1016/j.tcb.2009.06.004.

    CrossRef  PubMed  CAS  Google Scholar 

  • Yunta M, Lazo PA. Apoptosis protection and survival signal by the CD53 tetraspanin antigen. Oncogene. 2003a;22:1219–24. https://doi.org/10.1038/sj.onc.1206183.

    CrossRef  PubMed  CAS  Google Scholar 

  • Yunta M, Lazo PA. Tetraspanin proteins as organisers of membrane microdomains and signalling complexes. Cell Signal. 2003b;15:559–64.

    PubMed  CrossRef  CAS  Google Scholar 

  • Yunta M, Rodriguez-Barbero A, Arevalo MA, Lopez-Novoa JM, Lazo PA. Induction of DNA synthesis by ligation of the CD53 tetraspanin antigen in primary cultures of mesangial cells. Kidney Int. 2003;63:534–42. https://doi.org/10.1046/j.1523-1755.2003.00758.x.

    CrossRef  PubMed  CAS  Google Scholar 

  • Zhang XA, Bontrager AL, Hemler ME. Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific beta(1) integrins. J Biol Chem. 2001;276:25005–13.

    PubMed  CrossRef  CAS  Google Scholar 

  • Zoller M. Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer. 2009;9:40–55.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro A. Lazo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Lazo, P.A., Yunta, M., Barcia, R. (2018). CD53. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_566

Download citation