Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

NKp46

  • Simona Sivori
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_564

Synonyms

 CD335

Historical Background

NK cell function is finely regulated by a series of inhibitory or activating receptors. The inhibitory receptors, specific for major histocompatibility complex (MHC) class I molecules, allow NK cells to discriminate between normal cells and cells that have lost the expression of MHC class I (e.g., tumor cells). In the absence of sufficient signaling by their HLA class I-specific inhibitory receptors, human natural killer (NK) cells become activated and display potent cytotoxicity against cells that are HLA class I negative. This indicates that the NK receptors responsible for the induction of cytotoxicity recognize ligands on target cells different from HLA class I molecules. These receptors have been termed natural cytotoxicity receptors (NCR) and include NKp46, together with NKp44 and NKp30 (Bottino et al. 2000). A direct correlation exists between the surface density of NCR and the ability of NK cells to kill various target cells (Sivori et al. 1999...

This is a preview of subscription content, log in to check access.

References

  1. Arnon TI, Achdout H, Lieberman N, Gazit R, Gonen-Gross T, Katz G, et al. The mechanisms controlling the recognition of tumor- and virus-infected cells by NKp46. Blood. 2004;103:664–72.  https://doi.org/10.1182/blood-2003-05-1716.CrossRefPubMedGoogle Scholar
  2. Bensussan A, Remtoula N, Sivori S, Bagot M, Moretta A, Marie-Cardine A. Expression and function of the natural cytotoxicity receptor NKp46 on circulating malignant CD4+ T lymphocytes of Sézary syndrome patients. J Invest Dermatol. 2011;131:969–76.  https://doi.org/10.1038/jid.2010.404.CrossRefPubMedGoogle Scholar
  3. Biassoni R. Natural killer cell receptors. Adv Exp Med Biol. 2008;640:35–52.  https://doi.org/10.1007/978-0-387-09789-3_4.CrossRefPubMedGoogle Scholar
  4. Björkström NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA, et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood. 2010;116:3853–64.  https://doi.org/10.1182/blood-2010-04-281675.CrossRefPubMedGoogle Scholar
  5. Bloushtain N, Qimron U, Bar-Ilan A, Hershkovitz O, Gazit R, Fima E, et al. Membrane-associated heparan sulfate proteoglycans are involved in the recognition of cellular targets by NKp30 and NKp46. J Immunol. 2004;173:2392–401.CrossRefPubMedGoogle Scholar
  6. Bottino C, Biassoni R, Millo R, Moretta L, Moretta A. The human natural cytotoxicity receptors (NCR) that induce HLA class I-independent NK cell triggering. Hum Immunol. 2000;61:1–6.CrossRefPubMedGoogle Scholar
  7. Capila I, Linhardt RJ. Heparin-protein interactions. Angew Chem Int Ed Eng. 2002;41:391–412.  https://doi.org/10.1002/1521-3773(20020201)41:3<390::AID-ANIE390>3.0.CO;2-B.CrossRefGoogle Scholar
  8. Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz JK, et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature. 2009;457:722–5.  https://doi.org/10.1038/nature07537.CrossRefPubMedGoogle Scholar
  9. Diefenbach A, Colonna M, Koyasu S. Development, differentiation, and diversity of innate lymphoid cells. Immunity. 2014;41:354–65.  https://doi.org/10.1016/j.immuni.2014.09.005.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dudakov JA, Hanash AM, van den Brink MR. Interleukin-22: immunobiology and pathology. Annu Rev Immunol. 2015;33:747–85.  https://doi.org/10.1146/annurev-immunol-032414-112123.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Garg A, Barnes PF, Porgador A, Roy S, Wu S, Nanda JS, et al. Vimentin expressed on Mycobacterium tuberculosis-infected human monocytes is involved in binding to the NKp46 receptor. J Immunol. 2006;177:6192–8.CrossRefPubMedGoogle Scholar
  12. Gazit R, Gruda R, Elboim M, Arnon TI, Katz G, Achdout H, et al. Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol. 2006;7:517–23.  https://doi.org/10.1038/ni1322.CrossRefPubMedGoogle Scholar
  13. Glatzer T, Killig M, Meisig J, Ommert I, Luetke-Eversloh M, Babic M, et al. RORgammat(+) innate lymphoid cells acquire a proinflammatory program upon engagement of the activating receptor NKp44. Immunity. 2013;38:1223–35.  https://doi.org/10.1016/j.immuni.2013.05.013.CrossRefPubMedGoogle Scholar
  14. Hoorweg K, Peters CP, Cornelissen F, Aparicio-Domingo P, Papazian N, Kazemier G, et al. Functional differences between human NKp44(−) and NKp44(+) RORC(+) innate lymphoid cells. Front Immunol. 2012;3:72.  https://doi.org/10.3389/fimmu.2012.00072.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kelley J, Walter L, Trowsdale J. Comparative genomics of natural killer cell receptor gene clusters. PLoS Genet. 2005;1:129–39.  https://doi.org/10.1371/journal.pgen.0010027.CrossRefPubMedGoogle Scholar
  16. Killig M, Glatzer T, Romagnani C. Recognition strategies of group 3 innate lymphoid cells. Front Immunol. 2014;5:142.  https://doi.org/10.3389/fimmu.2014.00142.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lopez-Vergès S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, et al. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood. 2010;116:3865–74.  https://doi.org/10.1182/blood-2010-04-282301.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y, et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature. 2001;409:1055–60.  https://doi.org/10.1038/35059110.CrossRefPubMedGoogle Scholar
  19. Meresse B, Curran SA, Ciszewski C, Orbelyan G, Setty M, Bhagat G, et al. Reprogramming of CTLs into natural killer-like cells in celiac disease. J Exp Med. 2006;203:1343–55.  https://doi.org/10.1084/jem.20060028.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Montaldo E, Vacca P, Moretta L, Mingari MC. Development of human natural killer cells and other innate lymphoid cells. Semin Immunol. 2014;26:107–13.  https://doi.org/10.1016/j.smim.2014.01.006.CrossRefPubMedGoogle Scholar
  21. Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol. 2001;19:197–223.  https://doi.org/10.1146/annurev.immunol.19.1.197.CrossRefPubMedGoogle Scholar
  22. Muntasell A, Vilches C, Angulo A, López-Botet M. Adaptive reconfiguration of the human NK-cell compartment in response to cytomegalovirus: a different perspective of the host-pathogen interaction. Eur J Immunol. 2013;43:1133–41.  https://doi.org/10.1002/eji.201243117.CrossRefPubMedGoogle Scholar
  23. Pesce S, Greppi M, Tabellini G, Rampinelli F, Parolini S, Olive D, et al. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. J Allergy Clin Immunol. 2016; pii: S0091-6749(16)30360-8.  https://doi.org/10.1016/j.jaci.2016.04.025.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Pessino A, Sivori S, Bottino C, Malaspina A, Morelli L, Moretta L, et al. Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J Exp Med. 1998;188:953–60.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Ponassi M, Cantoni C, Biassoni R, Conte R, Spallarossa A, Moretta A, et al. Expression and crystallographic characterization of the extracellular domain of human natural killer cell triggering receptor NKp46. Acta Crystallogr D Biol Crystallogr. 2003;59:2259–61.  https://doi.org/10.1107/S090744490301895X.CrossRefPubMedGoogle Scholar
  26. Rankin LC, Girard-Madoux MJ, Seillet C, Mielke LA, Kerdiles Y, Fenis A, et al. Complementarity and redundancy of IL-22-producing innate lymphoid cells. Nat Immunol. 2016;17:179–86.  https://doi.org/10.1038/ni.3332.CrossRefPubMedGoogle Scholar
  27. Rölle A, Brodin P. Immune adaptation to environmental influence: the case of NK cells and HCMV. Trends Immunol. 2016;37:233–43.  https://doi.org/10.1016/j.it.2016.01.005.CrossRefPubMedGoogle Scholar
  28. Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F, et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity. 2008;29:958–70.  https://doi.org/10.1016/j.immuni.2008.11.001.CrossRefPubMedGoogle Scholar
  29. Seillet C, Belz GT, Huntington ND. Development, homeostasis, and heterogeneity of NK cells and ILC1. Curr Top Microbiol Immunol. 2016;395:37–61.  https://doi.org/10.1007/82_2015_474.CrossRefPubMedGoogle Scholar
  30. Sivori S, Vitale M, Morelli L, Sanseverino L, Augugliaro R, Bottino C, et al. p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med. 1997;186:1129–36.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Sivori S, Pende D, Bottino C, Marcenaro E, Pessino A, Biassoni R, et al. NKp46 is the major triggering receptor involved in the natural cytotoxicity of fresh or cultured human NK cells. Correlation between surface density of NKp46 and natural cytotoxicity against autologous, allogeneic or xenogeneic target cells. Eur J Immunol. 1999;29:1656–66.CrossRefPubMedGoogle Scholar
  32. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells: a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13:145–9.  https://doi.org/10.1038/nri3365.CrossRefPubMedGoogle Scholar
  33. Vacca P, Montaldo E, Croxatto D, Moretta F, Bertaina A, Vitale C, et al. NK cells and other innate lymphoid cells in hematopoietic stem cell transplantation. Front Immunol. 2016;7:188.  https://doi.org/10.3389/fimmu.2016.00188.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Vivier E, Spits H, Cupedo T. Interleukin-22-producing innate immune cells: new players in mucosal immunity and tissue repair? Nat Rev Immunol. 2009;9:229–34.  https://doi.org/10.1038/nri2522.CrossRefPubMedGoogle Scholar
  35. Warren HS, Jones AL, Freeman C, Bettadapura J, Parish CR. Evidence that the cellular ligand for the human NK cell activation receptor NKp30 is not a heparan sulfate glycosaminoglycan. J Immunol. 2005;175:207–12.CrossRefPubMedGoogle Scholar
  36. Zilka A, Landau G, Hershkovitz O, Bloushtain N, Bar-Ilan A, Benchetrit F, et al. Characterization of the heparin/heparan sulfate binding site of the natural cytotoxicity receptor NKp46. Biochemistry. 2005;44:14477–85.  https://doi.org/10.1021/bi051241s.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Medicina Sperimentale (DI.ME.S.) and Centro di Eccellenza per lo studio dei meccanismi molecolari di comunicazione tra cellule: dalla ricerca di base alla clinica (CEBR)Università di GenovaGenoaItaly