Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • David S. MouraEmail author
  • Lara CantareroEmail author
  • Elena Martín-DoncelEmail author
  • Ignacio Campillo-MarcosEmail author
  • Pedro A. LazoEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_563


Historical Background

VRK3 is a member of the vaccinia-related kinase family (Manning et al. 2002), which comprises a group of three proteins, of which two,  VRK1 and  VRK2, are catalytically active. VRK3 has substitutions in key residues within its catalytic domain and is under some conditions a pseudokinase without kinase activity (Nichols and Traktman 2004). The biological effects of VRK3 are mediated by protein-protein interactions. VRK3 can deactivate mitogen-activated protein (MAP) kinase signaling in the nucleus by activating phosphatases such as VHR, which dephosphorylates extracellular signal-regulated protein kinase (ERK), and reduces its ability to activate transcription. VRK3 kinase activity can be induced by its interaction with BAF that modifies the conformation of the vrk3 n-terminal domain (Park et al. 2015).

VRK3 Gene Expression

The human VRK3 gene is located in chromosome 19q13.33, has...

This is a preview of subscription content, log in to check access.


  1. Gozdz A, Vashishta A, Kalita K, Szatmari E, Zheng JJ, Tamiya S, et al. Cisplatin-mediated activation of extracellular signal-regulated kinases 1/2 (ERK1/2) by inhibition of ERK1/2 phosphatases. J Neurochem. 2008;106:2056–67.  https://doi.org/10.1111/j.1471-4159.2008.05550.xCrossRefPubMedPubMedCentralGoogle Scholar
  2. Kang TH, Kim KT. Negative regulation of ERK activity by VRK3-mediated activation of VHR phosphatase. Nat Cell Biol. 2006;8:863–9.  https://doi.org/10.1038/ncb1447CrossRefPubMedGoogle Scholar
  3. Kang TH, Kim KT. VRK3-mediated inactivation of ERK signaling in adult and embryonic rodent tissues. BBA Mol Cell Res. 2008;1783:49–58.  https://doi.org/10.1016/j.bbamcr.2007.10.011CrossRefGoogle Scholar
  4. Komurov K, Padron D, Cheng T, Roth M, Rosenblatt KP, White MA. Comprehensive mapping of the human kinome to epidermal growth factor receptor signaling. J Biol Chem. 2010;285:21134–42.  https://doi.org/10.1074/jbc.M110.137828.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34.  https://doi.org/10.1126/science.1075762.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Montes de Oca R, Shoemaker CJ, Gucek M, Cole RN, Wilson KL. Barrier-to-autointegration factor proteome reveals chromatin-regulatory partners. PLoS One. 2009;4:e7050.  https://doi.org/10.1371/journal.pone.0007050.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Nichols RJ, Traktman P. Characterization of three paralogous members of the Mammalian vaccinia related kinase family. J Biol Chem. 2004;279:7934–46.  https://doi.org/10.1074/jbc.M310813200CrossRefPubMedGoogle Scholar
  8. Park CH, Ryu HG, Kim SH, Lee D, Song H, Kim KT. Presumed pseudokinase VRK3 functions as a BAF kinase. BBA Mol Cell Res. 2015;1853:1738–48.  https://doi.org/10.1016/j.bbamcr.2015.04.007.CrossRefGoogle Scholar
  9. Sanz-Garcia M, Lopez-Sanchez I, Lazo PA. Proteomics identification of nuclear Ran GTPase as an inhibitor of human VRK1 and VRK2 (vaccinia-related kinase) activities. Mol Cell Proteomics. 2008;7:2199–214.  https://doi.org/10.1074/mcp.M700586-MCP200.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Scheeff ED, Eswaran J, Bunkoczi G, Knapp S, Manning G. Structure of the pseudokinase VRK3 reveals a degraded catalytic site, a highly conserved kinase fold, and a putative regulatory binding site. Structure. 2009;17:128–38.  https://doi.org/10.1016/j.str.2008.10.018.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Vega FM, Gonzalo P, Gaspar ML, Lazo PA. Expression of the VRK (vaccinia-related kinase) gene family of p53 regulators in murine hematopoietic development. FEBS Lett. 2003;544:176–80.  https://doi.org/10.1016/S0014-5793(03)00501-5CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de SalamancaSalamancaSpain
  2. 2.Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de SalamancaSalamancaSpain
  3. 3.Centro de Investigación del Cáncer (Universidad de Salamanca-CSIC), Campus Universitario Miguel de Unamuno s/nSalamancaSpain