Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Lara CantareroEmail author
  • David S. MouraEmail author
  • Marcella SalzanoEmail author
  • Diana M. MonsalveEmail author
  • Ignacio Campillo-MarcosEmail author
  • Elena Martín-DoncelEmail author
  • Pedro A. LazoEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_561


Historical Background

VRK proteins were identified as two human EST sequences whose translation products have homology with the kinase domain of the unique vaccinia virus B1 kinase, from where its name is derived. During its evolution and adaptation to its host, the virus incorporated the cellular sequence required for viral life-cycle regulation. VRK1 is a chromatin kinase that regulates multiple processes, reflecting its late appearance in evolution as coordinator of preexisting functions in higher eukaryotes.

VRK1 Gene Structure and Expression

The human VRK1 gene is located on the chromosomal region 14q32.2, contains 12 exons and codes for a protein with 396 amino acids (Nichols and Traktman 2004). This gene has a polymorphism, marker rs722869, which is useful in the identification of population structure and genetic ancestry (Lao et al. 2006). Chromosomal translocations in this region do not affect...

This is a preview of subscription content, log in to check access.


  1. Cantarero L, Sanz-Garcia M, Vinograd-Byk H, Renbaum P, Levy-Lahad E, Lazo PA. VRK1 regulates Cajal body dynamics and protects coilin from proteasomal degradation in cell cycle. Sci Rep. 2015;5:10543.  https://doi.org/10.1038/srep10543.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Cullen CF, Brittle AL, Ito T, Ohkura H. The conserved kinase NHK-1 is essential for mitotic progression and unifying acentrosomal meiotic spindles in Drosophila melanogaster. J Cell Biol. 2005;171:593–602.  https://doi.org/10.1083/jcb.200706067.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Choi YH, Lim JK, Jeong MW, Kim KT. HnRNP A1 phosphorylated by VRK1 stimulates telomerase and its binding to telomeric DNA sequence. Nucleic Acids Res. 2012;40:8499–518.  https://doi.org/10.1093/nar/gks634.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Fedorov O, Marsden B, Pogacic V, Rellos P, Muller S, Bullock AN, et al. A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc Natl Acad Sci U S A. 2007;104:20523–8.  https://doi.org/10.1073/pnas.0708800104.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Finetti P, Cervera N, Charafe-Jauffret E, Chabannon C, Charpin C, Chaffanet M, et al. Sixteen-kinase gene expression identifies luminal breast cancers with poor prognosis. Cancer Res. 2008;68:767–76.CrossRefPubMedGoogle Scholar
  6. Gonzaga-Jauregui C, Lotze T, Jamal L, Penney S, Campbell IM, Pehlivan D, et al. Mutations in VRK1 associated with complex motor and sensory axonal neuropathy plus microcephaly. JAMA Neurol. 2013;70:1491–8.  https://doi.org/10.1001/jamaneurol.2013.4598.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Guermah M, Palhan VB, Tackett AJ, Chait BT, Roeder RG. Synergistic functions of SII and p300 in productive activator-dependent transcription of chromatin templates. Cell. 2006;125:275–86.  https://doi.org/10.1016/j.cell.2006.01.055.CrossRefPubMedGoogle Scholar
  8. Hennig EE, Mikula M, Rubel T, Dadlez M, Ostrowski J. Comparative kinome analysis to identify putative colon tumor biomarkers. J Mol Med. 2012;90:447–56.  https://doi.org/10.1007/s00109-011-0831-6.CrossRefPubMedGoogle Scholar
  9. Kang TH, Kim KT. Negative regulation of ERK activity by VRK3-mediated activation of VHR phosphatase. Nat Cell Biol. 2006;8:863–9.CrossRefPubMedGoogle Scholar
  10. Kang TH, Park DY, Choi YH, Kim KJ, Yoon HS, Kim KT. Mitotic histone H3 phosphorylation by vaccinia-related kinase 1 in mammalian cells. Mol Cell Biol. 2007;27:8533–46.  https://doi.org/10.1128/MCB.00018-07.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kang TH, Park DY, Kim W, Kim KT. VRK1 phosphorylates CREB and mediates CCND1 expression. J Cell Sci. 2008;121:3035–41.  https://doi.org/10.1242/jcs.026757.CrossRefPubMedGoogle Scholar
  12. Kim J, Choi YH, Chang S, Kim KT, Je JH. Defective folliculogenesis in female mice lacking vaccinia-related kinase 1. Sci Rep. 2012a;2:468.  https://doi.org/10.1038/srep00468.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kim W, Chakraborty G, Kim S, Shin J, Park CH, Jeong MW, et al. Macro histone H2A1.2 (MacroH2A1) protein suppresses mitotic kinase VRK1 during interphase. J Biol Chem. 2012b;287:5278–89.  https://doi.org/10.1074/jbc.M111.281709.CrossRefPubMedGoogle Scholar
  14. Klerkx EP, Lazo PA, Askjaer P. Emerging biological functions of the vaccinia-related kinase (VRK) family. Histol Histopathol. 2009;24:749–59.PubMedGoogle Scholar
  15. Lao O, van Duijn K, Kersbergen P, de Knijff P, Kayser M. Proportioning whole-genome single-nucleotide-polymorphism diversity for the identification of geographic population structure and genetic ancestry. Am J Hum Genet. 2006;78:680–90.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Lopez-Borges S, Lazo PA. The human vaccinia-related kinase 1 (VRK1) phosphorylates threonine-18 within the mdm-2 binding site of the p53 tumour suppressor protein. Oncogene. 2000;19:3656–64.  https://doi.org/10.1038/sj.onc.1203709.CrossRefPubMedGoogle Scholar
  17. Lopez-Sanchez I, Sanz-Garcia M, Lazo PA. Plk3 interacts with and specifically phosphorylates VRK1 in Ser342, a downstream target in a pathway that induces Golgi fragmentation. Mol Cell Biol. 2009;29:1189–201.  https://doi.org/10.1128/MCB.01341-08.CrossRefPubMedGoogle Scholar
  18. Lopez-Sanchez I, Valbuena A, Vazquez-Cedeira M, Khadake J, Sanz-Garcia M, Carrillo-Jimenez A, et al. VRK1 interacts with p53 forming a basal complex that is activated by UV-induced DNA damage. FEBS Lett. 2014;588:692–700.  https://doi.org/10.1016/j.febslet.2014.01.040.CrossRefPubMedGoogle Scholar
  19. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34.  https://doi.org/10.1126/science.1075762.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Molitor TP, Traktman P. Depletion of the protein kinase VRK1 disrupts nuclear envelope morphology and leads to BAF retention on mitotic chromosomes. Mol Biol Cell. 2014;25:891–903.  https://doi.org/10.1091/mbc.E13-10-0603.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Molitor TP, Traktman P. Molecular genetic analysis of VRK1 in mammary epithelial cells: depletion slows proliferation in vitro and tumor growth and metastasis in vivo. Oncogenesis. 2013;2:e48.  https://doi.org/10.1038/oncsis.2013.11.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Monsalve DM, Campillo-Marcos I, Salzano M, Sanz-Garcia M, Cantarero L, Lazo PA. VRK1 phosphorylates and protects NBS1 from ubiquitination and proteasomal degradation in response to DNA damage. BBA Mol Cell Res. 2016;1863:760–9.  https://doi.org/10.1016/j.bbamcr.2016.02.005.CrossRefGoogle Scholar
  23. Moura DS, Fernández IF, Marín-Royo G, López-Sánchez I, Martín-Doncel E, Vega FM, et al. Oncogenic Sox2 regulates and cooperates with VRK1 in cell cycle progression and differentiation. Sci Rep. 2016;6:28532.  https://doi.org/10.1038/srep28532.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, Chen W, et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature. 2011;478:57–63.  https://doi.org/10.1038/nature10423.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nezu J, Oku A, Jones MH, Shimane M. Identification of two novel human putative serine/threonine kinases, VRK1 and VRK2, with structural similarity to vaccinia virus B1R kinase. Genomics. 1997;45:327–31.CrossRefPubMedGoogle Scholar
  26. Nguyen TP, Biliciler S, Wiszniewski W, Sheikh K. Expanding phenotype of VRK1 mutations in motor neuron disease. J Clin Neuromuscul Dis. 2015;17:69–71.  https://doi.org/10.1097/CND.0000000000000096.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Nichols RJ, Traktman P. Characterization of three paralogous members of the Mammalian vaccinia related kinase family. J Biol Chem. 2004;279:7934–46.PubMedCrossRefGoogle Scholar
  28. Nichols RJ, Wiebe MS, Traktman P. The vaccinia-related kinases phosphorylate the N′ terminus of BAF, regulating its interaction with DNA and its retention in the nucleus. Mol Biol Cell. 2006;17:2451–64.  https://doi.org/10.1091/mbc.E05-12-1179.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, et al. The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2014;42:D358–63.  https://doi.org/10.1093/nar/gkt1115.CrossRefPubMedGoogle Scholar
  30. Park CH, Ryu HG, Kim SH, Lee D, Song H, Kim KT. Presumed pseudokinase VRK3 functions as a BAF kinase. BBA Mol Cell Res. 2015;1853:1738–48.  https://doi.org/10.1016/j.bbamcr.2015.04.007.CrossRefGoogle Scholar
  31. Renbaum P, Kellerman E, Jaron R, Geiger D, Segel R, Lee M, et al. Spinal muscular atrophy with pontocerebellar hypoplasia is caused by a mutation in the VRK1 gene. Am J Hum Genet. 2009;85:281–9.  https://doi.org/10.1016/j.ajhg.2009.07.006.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Salzano M, Sanz-Garcia M, Monsalve DM, Moura DS, Lazo PA. VRK1 chromatin kinase phosphorylates H2AX and is required for foci formation induced by DNA damage. Epigenetics. 2015;10:373–83.  https://doi.org/10.1080/15592294.2015.1028708.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Salzano M, Vazquez-Cedeira M, Sanz-Garcia M, Valbuena A, Blanco S, Fernandez IF, et al. Vaccinia-related kinase 1 (VRK1) confers resistance to DNA-damaging agents in human breast cancer by affecting DNA damage response. Oncotarget. 2014;5:1770–8.  https://doi.org/10.18632/oncotarget.1678.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Santos CR, Rodriguez-Pinilla M, Vega FM, Rodriguez-Peralto JL, Blanco S, Sevilla A, et al. VRK1 signaling pathway in the context of the proliferation phenotype in head and neck squamous cell carcinoma. Mol Cancer Res. 2006;4:177–85.  https://doi.org/10.1158/1541-7786.MCR-05-0212.CrossRefPubMedGoogle Scholar
  35. Sanz-Garcia M, Lopez-Sanchez I, Lazo PA. Proteomics identification of nuclear Ran GTPase as an inhibitor of human VRK1 and VRK2 (vaccinia-related kinase) activities. Mol Cell Proteomics. 2008;7:2199–214.  https://doi.org/10.1074/mcp.M700586-MCP200.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Sanz-Garcia M, Monsalve DM, Sevilla A, Lazo PA. Vaccinia-related Kinase 1 (VRK1) is an upstream nucleosomal kinase required for the assembly of 53BP1 foci in response to ionizing radiation-induced DNA damage. J Biol Chem. 2012;287:23757–68.  https://doi.org/10.1074/jbc.M112.353102.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sanz-Garcia M, Vazquez-Cedeira M, Kellerman E, Renbaum P, Levy-Lahad E, Lazo PA. Substrate profiling of human vaccinia-related kinases identifies coilin, a Cajal body nuclear protein, as a phosphorylation target with neurological implications. J Proteome. 2011;75:548–60.  https://doi.org/10.1016/j.jprot.2011.08.019.CrossRefGoogle Scholar
  38. Sevilla A, Santos CR, Barcia R, Vega FM, Lazo PA. c-Jun phosphorylation by the human vaccinia-related kinase 1 (VRK1) and its cooperation with the N-terminal kinase of c-Jun (JNK). Oncogene. 2004a;23:8950–8.  https://doi.org/10.1038/sj.onc.1208015.CrossRefPubMedGoogle Scholar
  39. Sevilla A, Santos CR, Vega FM, Lazo PA. Human vaccinia-related kinase 1 (VRK1) activates the ATF2 transcriptional activity by novel phosphorylation on Thr-73 and Ser-62 and cooperates with JNK. J Biol Chem. 2004b;279:27458–65.  https://doi.org/10.1074/jbc.M401009200.CrossRefPubMedGoogle Scholar
  40. Shin J, Chakraborty G, Bharatham N, Kang C, Tochio N, Koshiba S, et al. NMR solution structure of human vaccinia-related kinase 1 (VRK1) reveals the C-terminal tail essential for its structural stability and autocatalytic activity. J Biol Chem. 2011;286:22131–8.  https://doi.org/10.1074/jbc.M110.200162.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Stoll M, Teoh H, Lee J, Reddel S, Zhu Y, Buckley M, et al. Novel motor phenotypes in patients with VRK1 mutations without pontocerebellar hypoplasia. Neurology. 2016;  https://doi.org/10.1212/WNL.0000000000002813.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Suzuki Y, Ogawa K, Koyanagi Y. Functional disruption of the moloney murine leukemia virus preintegration complex by vaccinia-related kinases. J Biol Chem. 2010;285:24032–43.  https://doi.org/10.1074/jbc.M110.116640.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Valbuena A, Blanco S, Vega FM, Lazo PA. The C/H3 domain of p300 is required to protect VRK1 and VRK2 from their downregulation induced by p53. PLoS One. 2008a;3:e2649.  https://doi.org/10.1371/journal.pone.0002649.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Valbuena A, Castro-Obregon S, Lazo PA. Downregulation of VRK1 by p53 in response to DNA damage is mediated by the autophagic pathway. PLoS One. 2011a;6:e17320.  https://doi.org/10.1371/journal.pone.0017320.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Valbuena A, Lopez-Sanchez I, Lazo PA. Human VRK1 is an early response gene and its loss causes a block in cell cycle progression. PLoS One. 2008b;3:e1642.  https://doi.org/10.1371/journal.pone.0001642.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Valbuena A, Lopez-Sanchez I, Vega FM, Sevilla A, Sanz-Garcia M, Blanco S, et al. Identification of a dominant epitope in human vaccinia-related kinase 1 (VRK1) and detection of different intracellular subpopulations. Arch Biochem Biophys. 2007a;465:219–26.  https://doi.org/10.1016/j.abb.2007.06.005.CrossRefPubMedGoogle Scholar
  47. Valbuena A, Sanz-Garcia M, Lopez-Sanchez I, Vega FM, Lazo PA. Roles of VRK1 as a new player in the control of biological processes required for cell division. Cell Signal. 2011b;23:1267–72.  https://doi.org/10.1016/j.cellsig.2011.04.002.CrossRefPubMedGoogle Scholar
  48. Valbuena A, Suarez-Gauthier A, Lopez-Rios F, Lopez-Encuentra A, Blanco S, Fernandez PL, et al. Alteration of the VRK1-p53 autoregulatory loop in human lung carcinomas. Lung Cancer. 2007b;58:303–9.  https://doi.org/10.1016/j.lungcan.2007.06.023.CrossRefPubMedGoogle Scholar
  49. Valbuena A, Vega FM, Blanco S, Lazo PA. p53 downregulates its activating vaccinia-related kinase 1, forming a new autoregulatory loop. Mol Cell Biol. 2006;26:4782–93.  https://doi.org/10.1128/MCB.00069-06.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Vazquez-Cedeira M, Barcia-Sanjurjo I, Sanz-Garcia M, Barcia R, Lazo PA. Differential inhibitor sensitivity between human kinases VRK1 and VRK2. PLoS One. 2011;6:e23235.  https://doi.org/10.1371/journal.pone.0023235.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Vega FM, Gonzalo P, Gaspar ML, Lazo PA. Expression of the VRK (vaccinia-related kinase) gene family of p53 regulators in murine hematopoietic development. FEBS Lett. 2003;544:176–80.CrossRefPubMedGoogle Scholar
  52. Vega FM, Sevilla A, Lazo PA. p53 Stabilization and accumulation induced by human vaccinia-related kinase 1. Mol Cell Biol. 2004;24:10366–80.  https://doi.org/10.1128/MCB.24.23.10366-10380.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Vinograd-Byk H, Sapir T, Cantarero L, Lazo PA, Zeligson S, Lev D, et al. The spinal muscular atrophy with pontocerebellar hypoplasia gene VRK1 regulates neuronal migration through an amyloid-beta precursor protein-dependent mechanism. J Neurosci. 2015;35:936–42.  https://doi.org/10.1523/JNEUROSCI.1998-14.2015.CrossRefPubMedGoogle Scholar
  54. Wiebe MS, Nichols RJ, Molitor TP, Lindgren JK, Traktman P. Mice deficient in the serine/threonine protein kinase VRK1 are infertile due to a progressive loss of spermatogonia. Biol Reprod. 2010;82:182–93.  https://doi.org/10.1095/biolreprod.109.079095.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Instituto de Biología Molecular y Celular del CáncerConsejo Superior de Investigaciones Científicas (CSIC)-Universidad de SalamancaSalamancaSpain
  2. 2.Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de SalamancaSalamancaSpain
  3. 3.Centro de Investigación del Cáncer (Universidad de Salamanca-CSIC), Campus Universitario Miguel de Unamuno s/nSalamancaSpain
  4. 4.Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de SalamancaSalamancaSpain